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p-ADIC DERIVED DE RHAM COHOMOLOGY

BHARGAV BHATT

ABSTRACT. This paper studies the derived de Rham cohomolody,péndp-adic schemes, and is inspired by Beilinson’s
work [Bei]. Generalising work of lllusie, we construct a aatl isomorphism between derived de Rham cohomology and
crystalline cohomology for lanapsof such schemes, as well logarithmic variants. These casgrar give derived de Rham
descriptions of the usual period rings and related mapsadic Hodge theory. Placing these ideas in the skeleton eif [B
leads to a new proof of Fontaine’s crystalline conjecilitgys and Fontaine-Jannsen’s semistable conjedfiye

1. INTRODUCTION

This paper grew from an attempt at lifting Beilinson’s pr¢Béi] of Fontaine’sCyr conjecture inp-adic Hodge
theory to the more refined crystalline and semistable ggttine briefly recall the surrounding picture§h.1, and
then discuss how this fits into the present papédi2. An actual description of the contents is availablglint.

1.1. Background. Let X be a smooth projective variety over a characterisfield /. There are two Weil cohomol-
ogy theories naturally associatedXo the de Rham cohomolog¥ i, (X ), which is aK -vector space equipped with
the Hodge filtration, and the-adic étale conomologsf/, (X ) := H{, (X%, Z,), which is aZ,-module equipped with

a continuous action dfal(K / K), for a fixed primep. These theories are often closely related:

If K = C, then the classical de Rham comparison theorem identifidhide cohomology with Betti cohomology,
and lies at the heart of Hodge theory and the theory of periddeposition with Artin’s comparison between Betti and
étale cohomology (tensored up along some embeddjng+ C) then yields an isomorphism between de Rham and
étale cohomologies. The key to de Rham'’s theorem is thevilig observation: the spacé(C) admits sufficiently
many small open& C X (C) whose de Rham cohomology is trivial. This observation givesap fromHj; (X)) to
the constant she& on X (C), and thus a map of (derived) global sections

Comp,, : Hir(X) - H*(X(C),C) ~ H; (X) ®z, C.

Having defined the map, it is easy to show tBainp,, is an isomorphism: one can either check this locallygror
simply argue that a map of Weil cohomology theories with gfmrthal properties is automatically an isomorphism.

Now assume thakl a p-adic local field. The analogue of the preceding complexyditastory is Fontaine’s de
Rham comparison conjectutgz. Specifically, Fontaine constructed a filter€dl( K / K)-equivariantk -algebra
Bgr that is complete for the filtration, and conjectured thetexise of a functorial isomorphism

Compgft : Hip(X) ®k Bar ~ Hf(X) ®z, Bar

compatible with the tensor product filtrations and Galoigoes. This statement occupies a central positiop-atdic
Hodge theory and arithmetic geometry, and has numerouscapiphs® There are multiple proofs aflyz by now
(see§l1.3), and we briefly discuss the recent one [Bei] as it is cptuadly simple and closest to this paper. Beilinson
observed that the complex analytic proof sketched abowewatsks in thep-adic context provided one measures
“small opens” using Voevodsky’s-topology. More precisely, he showed that (completed) darRlcohomology
sheafifies to a constant sheaf on thpology of ap-adic scheme; one then constru€tsnpd® and shows that it is
an isomorphism, just as f@fomp_, above. The two main ingredients of his proof are: de Jon¢gsations theorems
for constructing the desired “small opens” (via hdivisility results of [Bhae]), and the Hodge-completedsien of
lllusie’s derived de Rham cohomology theory for workinglwihe de Rham cohomology of some non-smooth maps.
The Fontaine-Jannsen semistable conjeafugds a refinement of th€’yr conjecture takes into account the ge-
ometry of X and the arithmetic ok better. LetK and X be as above, leky denote the maximal unramified subfield
of K, and assume thaX admits a semistable model ov@ry, the ring of integers of. Then Kato’s theory of

1The arithmetic applications are too many to list, but theesgeometric applications too. For instance,@g; conjecture (together with some
basic structure theory dByr) implies that the Galois representatidfy, (X) “knows” the Hodge numbers oX’; this can be used to prove the

birational invariance of Hodge numbers for smooth minimabels overC [Ito03].
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log crystalline cohomology endowsj; (X)) with the following additional structures: Ay-structureH j; (X)o, a
monodromy operator, and a Frobenius action. The semistabiecture predicts a comparison isomorphism

Compj; : Hig(X)o @k, Ba ~ Hi(X) @z, B,

preserving all natural structures; hesg is a filteredGal(K / K )-equivarianty-subalgebra oB4r that has a Frobe-
nius action and a monodromy oper&toFhis conjecture is a-adic analog of Steenbrink’s work [Ste76] on limiting
mixed Hodge structures. It is also stronger thand@hg conjecture: (a) the left hand side 86mpS; (with its nat-
ural structures) recovers thgal(/ /K )-module HZ, (X)[1/p], while the same is not true for the left hand side of
Compdk, and (b) one can deducgr from Cy; using de Jong’s theorem [dJ96]. Roughly speaking, the réiffee
betweenCyr andCy; is one of completions: the rin§; is not complete for the Hodge filtration, so it detects more
than its completed counterpart. One major goal of this peEpgive a simple conceptual proof of tlig; conjecture.

1.2. Results. Our proof ofCy follows the skeleton of [Bei] sketched above, except thathwst prove non-completed
analogs of all results in derived de Rham cohomology whosgpbeted version was used in [Bei]. In fact, this latter
task takes up the bulk (s¢8 and§7) of the paper: until now (to the best of our knowledge), ¢heere essentially
no known techniques for working with the non-completed wtide Rham cohomology, e.g., one did not know a
spectral sequence with computalile terms that converged to derived de Rham cohomology. The baservation

in this paper is that Cartier theory works extremely wellhia tlerived world in complete generality:

Theorem(see Proposition 3.5 et f : X — S be a morphism dF ,-schemes, and lefR x, 5 denote lllusie’s derived
de Rham complex. Then there exists a natural increasingdenibelow separated exhaustive filtratioinz°™, called
the conjugate filtrationof dR x /¢ that is functorial inf, and has graded pieces computed by

Cartier; : gr{”™ (dRx/s) ~ N Ly s[—i].

In particular, for any morphisnf as above, there is @njugatespectral sequence that converges to derived de
Rham cohomology of, and hask; terms computing cohomology of the wedge powers of the (Frinisetwisted)
cotangent complex. Using this theorem, we prove severalresuits on derived de Rham cohomology feadic
schemes. For example, we show the following non-completesion of a comparison isomorphism of lllusie:

Theorem (see Theorem 3.27)Let f : X — S be an Ici morphism of flaZ/p"-schemes. Then there is a natural
isomorphism
Rf*dRX/S = Rf*OX/S,crys-

Here the® s-complex on the right hand side is the relative crystallioeamology off3. A satisfying consequence
is that divided powers, instead of being introdutsgdiatas in the crystalline story, appear very naturally in detive
de Rham theory: they come from the divided power operationthe homology algebra of the Eilenberg-Maclane
(infinite loop) spacd((Z, 2) ~ CP=. We use this result if9 to give derived de Rham descriptions of various period
rings that occur irp-adic Hodge theory, such as Fontaine’s rifigy:

Theorem (see Proposition 9.9)There is a natural isomorphistc,ys ~ dR/Z—;ZP.

The previous isomorphism can be used to “see” certain rianatures om..,s. For example, Fontaine’s mép:
Z,(1) — A.ys (ap-adic version oRxi) is recovered as a Chern class map, see Construction 9el&ptresponding
completed picture describég g as in [Bei,§1.5]. With this theory in place, i10, we can show:

Theorem (see Theorem 10.17)TheC.,,s andCy conjectures are true.

As mentioned before, this result is not new, but our methqaobf is. The difficulty, as always, lies in constructing
a functorial comparison mapompgt. We do so by simply repeating Beilinson’s constructiorofupd® using non-
completed derived de Rham cohomology instead of its comglebusin; this is a viable approach thanks to the
results above. The underlying principle here may be sunsedras follows: for any algebraic varieky over K, the
Acrys-valued étale conomology di+ is the h-sheafification of the-adic derived de Rham cohomology of gmadic

2f X extends to a proper smoothy -scheme, then the monodromy operatorfdfy, (X)o is trivial, and one expects the comparison isomor-
phism to be defined over a smaller Galois and Frobenius etprdiltered subalgebr..ys C Bst; this is the crystalline conjectui@crys.
3In [Bhaf], we use the preceding comparison theorem and thizigate filtration on derived de Rham cohomology to show tiacrystalline
cohomology groups of even very mildly singular projectiwigties (such as stable singular curves) are infinitelyegiad. In fact, we fail to find
a single example of a singular projective variety with filyitgenerated crystalline cohomology!
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compactification of{+- (see Theorem 10.13). A slight difference in implementatiom [Bei] is that we must use the
conjugate spectral sequence, instead of the Hodge spsetraénce, to access [Bhae]. Oeenps! is constructed,
showing isomorphy is a formal argument in chasing Chernselaganalogous to the elementary fact that a distance
preserving endomorphism of a normed finite dimensionalveetior space is an isomorphism).

A technical detail elided above is that theadic applications (as well as the method of proof) necatgsé theory
of derived de Rham cohomology in thegarithmiccontext. Rudiments of this can be found in [Ols05], but, agad
non-completed results were known. Hencej6rands7, we set up elements of “derived logarithmic geometry” gsin
simplicial commutative rings and monoids (we stick to theglaage of model categories insteadofcategories for
simplicity of exposition). In particular, Gabber’s logdwinic cotangent complex from [OIs058] appears naturally
in this theory (see Remark 6.6), and one has logarithmidamssof the results mentioned above, e.g., a conjugate
spectral sequence for computing log derived de Rham colagyiad constructed in Proposition 7.4, and a comparison
isomorphism with log crystalline cohomology in the Ici c§abnost) is shown in Theorem 7.22.

1.3. A brief history of the comparison theorems. The comparison conjectures of Fontaine and Fontaine-darans

a series of increasingly stronger statements comparing-#utc étale cohomology of varieties oyeadic local fields

with their de Rham cohomology (see [Fon82, Fon83, 119@4]). These conjectures were made almost three decades
ago, and have proven to be extremely influential in moderthragtic geometry. All these conjectures have been
proven now: by Faltings [Fal88, Fal89, Fal02] using almog theory, by Niziol [Niz98, Niz08] via higher algebraic
K-theory, and by Tsuji [Tsu99] (building on work on Bloch-#aBK86], Fontaine-Messing [FM87], Hyodo-Kato
[HK94], and Kato [Kat94]) using the syntomic topology. Maexently, Scholze has reproven these conjectures (and
more) using his language of perfectoid spaces, which careleed as a conceptualisation of Faltings’ work. However,
these proofs are technically challenging (for example, lfi@albnd Ramerao’s presentation of the almost purity theorem
in [Fal02] takes two books [GR03, GRY]), and it was hoped thsinapler proof could be found. Such a proof was
arguably found by Beilinson in [Bei] for the de Rham compani€onjecture’yr; the present paper extends these
ideas to prove the crystalline conjectdrg,s and the semistable conjecturg.. While this paper was being prepared,
Beilinson has also independently found an extension [Beifl[Bei] to proveC.,ys andCs; his new proof bypasses
derived de Rham cohomology in favor of the more classicaldggtalline cohomology of Kato [Kat8%5-56].
However, both the present paper and [Beill] share an eakieletd: using the conjugate filtration to prove a Poincare
lemma for non-completed cohomology (compare the proof @orem 10.13 with [Beill152.2]).

1.4. Outline. Notation and homological conventions (especially surthog filtration convergence issues) are dis-
cussedirgl.5. In§2, we review the definition of derived de Rham cohomology fftim2, §VIII.2], and make general
observations; the important points are the conjugatetfiimaand the transitivity properties. Specialising modgpfto

in §3, we construct a map from derived de Rham cohomology toaltiyst cohomology in general, and show that it
is an isomorphism in the case of an habrphism(see Theorem 3.27). The main tool here is a derived Cartizryh
(Proposition 3.5), together with some explicit simpligiesolutions borrowed from [lye07].

Next, logarithmic analogues of the preceding results arertked in§6 and§7 based on Gabber’s approach to the
logarithmic cotangent complex from [OIs0§3]; see Theorem 7.22 for the best logarithmic comparisoultrese
show. Along the way, rudiments of “derived logarithmic gesirg” (with simplicial commutative monoids and rings)
are set up irg4 and parts o§6 as indicated ir§1.2*. Thep-adic limits of all these results are cataloguedn

Moving from algebraic geometry towards arithmetic, we $pléexe the preceding results to give derived de Rham
descriptions of ther-adic period rings irk9 (as indicated ir§1.2). In fact, the picture extends almost completely
to anyintegral perfectoid algebra in the sense of Scholze [Schdd]s briefly discussed in Remark 9.10. Using
these descriptions, we prove the Fontaine-Janasgigonjecture in10 as discussed ifll.2. The key result here is
crystallinep-adic Poincare lemma (Theorem 10.13). We also briefly dscelations with other proofs of theadic
comparison theorems in Remark 10.15.

1.5. Notation and conventions. For aringA, the ringA[z]{x) (or sometimes simplyl(x)) is the free pd-polynomial
ring in one variable: over A; in general, we usé to denote divided power adjunctions. Any tensor produceappg

is always derived unless otherwise specified. F@r,algebrad, we letA := lim, A/p"™ be thep-adic completion
of A unless explicitly specified otherwise. For a complexf Z,-modules, we define the deriveeadic completion

“We have tried to avoid using higher categorical languagé&embon-logarithmic story. However, model categories (ettds, co-categories)
seem necessary to cleanly present the logarithmic stosastt if one wishes to not get constantly bogged down in aggusithat require showing
that certain constructions are independent of choicesajégtive resolutions (= cofibrant replacements).
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ask := Rlim, K ®z Z/p"; if K hasZ,-flat terms, therk is computed as the termwigeadic completion ofK.
Note that the notation is inconsistent in the case fiat A is Z,-algebra that is ndZ,-flat, in which case we will
always mean the derived completion. We alsoBgtK') := RHomz(Q,/Z,, K); there is a natural equivalence
T,(K) ~ K|[—1]. All exterior powers that occur are derived as in [QUI7§#,

We often employ topological terminology when talking abooimplexes. A compleX over an abelian category
A is calledconnectivef 7_;(K) = H'(K) = 0 fori > 0; it is calledcoconnectivéf the preceding vanishing holds
fori < 0 instead. We say thdt is eventually connectiviésome shift of K" is connective, and similarly faventually
coconnectivegthese notions correspond to right-boundedness anddeftdedness in the derived category. A complex
K is said to ber-connectedf 7;(K) = 0 for : < n. All these notions are compatible with the usual topololgicees
under the Dold-Kan correspondence, which will be used witlfiorther comment.

The symbolA denotes the category of simplices. For a categbmye letsC denote the categofyun(A°PP, C) of
simplicial objects inC; dually, we use:C to denote the categofjun(A, C) of cosimplicial objects. For an objedf
in a categoryt, we letC, x (resp.Cx,) denote the category of objects®fying over (resp. lying underX, and for a
mapX — Y, we writeCy,/y for Cx, x¢ C)y.

If P, € scA is a simplicial cosimplicial object in an abelian categoty then we let|P,| € Ch°®(A) denote
the cochain complex obtained by totalising the associatatblé complex (via direct sums); this is a homotopy-
colimit over A°PP when P, is viewed as defining an object 6fCh®(A) via the Dold-Kan correspondence. The
canonical filtration on each cosimplicial objek}, fits together to define an increasing bounded below separated
exhaustive filtration ohP, | that we call theconjugate filtratiorFils®™ (| P, |). The associated graded pieg&™ (|P, )
may be identified as the object {tth®(A) defined byx*(P,)[—k]. Dually, if Q* € csA denotes a cosimplicial
simplicial object in an abelian categary, then we letTot(Q°®) € Che(A) be the chain complex obtained by taking
a homotopy-limit overA of @)°, viewed as an object afCh,(A); the canonical filtration on each simplicial object
Q" fits together to define a descreasing bounded above sepacagdete filtration orilot(Q)®) that we also call the
conjugate filtrationFil?, . (Tot(Q*)). The associated graded piegé,;(Tot(Q*)) may be identified as the object in
Che(A) defined byry (Q*)[k].

The following facts will be used freely. 11, — B, is a weak equivalence of simplicial rings, aid, is a
simplicial A,-module with)7,, flat overA,, for eachn, then the adjunction mapl, — M, ® 4, B, is an equivalence
of simplicial abelian groups; see [llI7%].3.3.2 and Corollary 1.3.3.4.6]. A map/ — N of (possibly unbounded)
complexes of /p™-modules is a quasi-isomorphism if and onWf @z /,» Z/p — N ®z,» Z/p is so; we refer to
this phenomenon as “devissage.”

Let Set, Ab, Mon, andAlg be the categories of sets, abelian groups, commutative isgre;md commutative rings
respectively. There are some obvious pairs of adjuncti@teéden these categories, and we employ the following

notation to refer to thes@reef’fbt : Set — Ab denotes the free abelian group functor with right adj@hittget‘s*;,

while Freezfﬁf : sSet — sAb denotes the induced functor on simplicial objects, etc.mydicial object in a concrete
category (likeSet, Ab, Mon, Alg, etc) is called discrete if the underlying simplicial sesds

Finally, many theorems in the paper are formulated and praveing-theoretic language. The globalisation to
guasi-compact quasi-separated schemes is immediater(eithrings in a topos using [llI73]1.2.3], or by Mayer-

Vietoris arguments and homotopy-coherence consideisgtibat we ignore this issue here to improve readability.

1.6. Acknowledgements. The author warmly thanks Sasha Beilinson for enlightenmversations and communi-
cations. The overwhelming intellectual debt this paper®tee[Bei] is evident. Moreover, the idea thatdically
completed derived de Rham cohomology (but without Hodgeptetion) could lead to a crystalline analogue of [Bei]
was expressed as a “hope” by Beilinson, and was the startiimg @f the author’s investigations. An equally substan-
tial yet intangible debt is owed to Quillen’s manuscripta[@a, Qui70b] for teaching the author how to work with
simplicial commutative rings. Special thanks are due tadate Jong for numerous useful conversations, especially
about homological algebra, and consistent encouragefeatuthor is also grateful to Jacob Lurie for conversations
that clarified many homotopical aspects of this work, and &tivi Olsson for a discussion of [OIs05].

2. THE DERIVED DE RHAM COMPLEX

lllusie’s derived de Rham complex [IlI72VIII.2] is a replacement for the usual de Rham complex thatkso
better for singular morphisms; the idea, roughly, is to aeplthe cotangent sheaf with the cotangent complex in the
definition of the usual de Rham complex. In this section, waine the reader of the definition, and some basic
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properties; these depend on a good understanding of pr@eesolutions of simplicial commutative rings, and a
robust formal framework for these is provided by Quillen'sdel structure [Qui70a] orAlg reviewed ing4.1.

Definition 2.1. Let A — B be aring map, and let 3,4 denote the cotangent complex. Then the derived de Rham
complex of B over A is defined to bdﬂ;g.(B/A)/M € D(Mod 4) whereP,(B/A) — B is the canonical free resolution

of B as and-algebra, wher€), , denotes the usual de Rham complex o4algebraC’. More generally, the same
definition applies whemd — B is a map of simplicial commutative rings in a topos.

Elaborating on Definition 2.1, observe trﬁ;,.(B/A)/A naturally has the structure of a simplicial cochain
complex. The associated total complé);,.(B/A)/A| is constructed usindirect sumsalong antidiagonals, and may
be viewed as a homotopy-colimit ovAPPP of the A-cochcain complex valued functar— Q;DH(B/A)/A; we typically
picture it as a second quadrant bicomplex. This descriptiakes it clear thaiR 5,4, comes equipped with af,.-
algebra structure, and a decreasing separated exhaustltiplicative Hodge filtrationFil;,. One can show that
dRp,4 can be defined using any free resolutiBn — B, and thus the functor ofR_,, commutes with filtered
colimits; see also [IlI72§VI111.2.1.1]. In fact, the functorlR _ ,, commutes witharbitrary colimits when viewed as a
functor E.-algebras, but we do not discuss that here (see Propositich@ugh).

Remark 2.2 (Lurie). Fix aring 4, and letsAlg,, be theco-category of simpliciald-algebras. There is a natural

Free

subcategory&lgljf/ee C sAlg,, spanned by free simplicially constadtalgebras. In factAlg,;“ generatesAlg 4,

Free

under homotopy-colimits. The functdt — dRp,4 onsAlg,, is the left Kan extension of Q}/A onAlgy,,*.
An important structure present diR 3, 4 is the conjugate filtration:

Proposition 2.3. Let A — B be a ring map (or a map of simplicial commutative rings). Ttieare exists a functorial
increasing bounded below separated exhaustive filtrafidff™ on dRp/a. This filtration can be defined using the
conjugate filtration on the bicompléx;g./A for any free A-algebra resolutionP, — A, and is independent of the
choice ofP,. In particular, there is a convergent spectral sequenc#edaheconjugate spectral sequenoéthe form

I Hp+q(grzcnonj (dRp/a)) = Hpiq(dRp/a)
that is functorial inA — B (here we follow the homological convention thiatis a mapE?-? — Ep=Ta+r=1),

Proof. The filtration in question is simply the conjugate filtratiom the homotopy-colimit of a simplicial cosimplicial
abelianA-module, as explained i§lL.5; we briefly reproduce the relevant arguments for theeeacbnvenience. Let
P, — B as anA-algebra. Then eacﬁ;gn/A comes equipped with the canonical filtration by cohomoldggases.
This leads to an increasing bounded belowOjaseparated exhaustive filtration of the bicompﬂé};./A (filter each
column by its canonical filtration). The associated gradedes of this filtration are naturally simplicial-cochain
complexes, with theé-th one given by simpliciad-cochain complex defined by — H'( P, /4)[—i]. The conjugate
filtration Fil<™ on dRp/4 is simply the corresponding filtration on the associategleinompleﬂQ;D./A|. If Foisa
different free resolution oB as anA-algebra, therF, is homotopy equivalent t®,. In particular, the simplicial-
cochain complexes Hi(Q;Dn/A) andn — Hi(Qh/A) are homotopy equivalent, which ensures that the resulting
two filtrations on the associated single compl|e%, ,| ~ dRp,4 ~ |QF, 4| coincide. Finally, the claim about
the spectral sequence is a general fact about increasingdbdibelow separated exhaustive filtrations on cochain
complexes; see [Lurll, Proposition 1.2.2.14] for more amgspectral sequence. O

Remark 2.4. Proposition 2.3 refers to the potentially nebulous notibfilivations on objects of the derived category
D(Mody) of A-modules. To make this precise, one could work wittFun(IN, Mod 4)) whereN is the poset of
natural numbers, viewed as a category. There is a (left @uilhomotopy-colimit functoD (Fun(N, Mod4)) —

D(Mod ), and the first assertion of Proposition 2.3 amounts to a daablift dR 3,4 of dR 5,4 along this functor
(by the formulan — |T§nQ*P./A|). The graded piec®§0“j(dRB/A) described above are recovered as the cone of

the mamvp,l(dﬁ;f/l) — evp(d/R-;;,), whereev,, : D(Fun(N,Mod 4)) — D(Mod ) is evaluation at € N, etc.
In the sequel, this picture will be implicit in all discuse®of filtered objects in derived categories.

A corollary of Proposition 2.3 if that if : B — C' is a map ofA-algebras that induces an equivalegc;é’“j(f)
forall ¢, then it also induces an equivalenceditiz /4 — dR¢/4, i.€., the passage frodR 4 to @pgrgonj(dRB/A)
is conservative. A consequence is that the conjugate iiiltrégs degenerate in characteristic
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Corollary 2.5. Let A — B be a map ofQ-algebras. Them ~ dRp /4.

Proof. Let A — P, — B be a free resolution oB relative to A. ThenQ;,n/A ~ A[0] as polynomial algebras in

characteristi® have no de Rham cohomology. It follows t}gafonj(dRB/A) = 0fori > 0, andgrgonj(dRB/A) = A.
The convergence of the conjugate spectral sequence therituopeest. O

Remark 2.6. Corollary 2.5 renders derived de Rham theory useless iracteistic0. A satisfactory fix is tadefine
dRp/4 asthe Hodge-completed version of the complex used abowehhpspeaking, this amounts to using the prod-
uct totalisation instead of the direct sum totalisation wtefining the derived de Rham complex. More practically, the
derived Hodge-to-de-Rham spectral sequence is forcedcecge, which immediately gives meaning to the resulting
theory as it specialises to classical de Rham cohomologgnfimoth maps. This is also the variant used in [Bei], but is
insufficient for thep-adic applications 0§10. In [Bhaa], we show that this Hodge-completed theadwayscoincides
with Hartshorne’s algebraic de Rham cohomology [Har75]fiiwite type maps of noetheria@-schemes (and thus
with Betti conomology ove€), generalising lllusie’s theorem [llI72, Theorem VI1128] from the Ici case.

We will see later that the conjugate filtration is quite nawial away from characteristié, and, in fact, forms the
basis of most of our computations. We end this section byudsng the behaviour under tensor products.

Proposition 2.7. Let A — B and A — C be ring maps. Then we have the Kunneth formula
dRB®AC/A ~ dRB/A ®A dRC/A
and a base change formula.
dRp/a ®a C ~dRpg,c/c»

where all tensor products are derived.

Proof. Both claims are clear when the algebras involved are polyaloAialgebras. The general case follows from
this by passage to free resolutions. O

3. DERIVED DE RHAM COHOMOLOGY MODULO p"

In this section, we investigate derived de Rham cohomologyrfaps ofZ/p™-algebras. By an elementary de-
vissage, almost all problems considered reduce to the dd8g-algebras. In this positive characteristic setting, our
main observation is thaterivedCartier theory gives a useable description of derived denRt@homology, and can
be effectively used to reduce questions in derived de Rhaorytto questions about the cotangent complex.

Notation 3.1 (Frobenius twists) Let f : A — B be a map off",-algebras. Letroby : A — A be the Frobenius
morphism o4, and define3™) := B® 4 pron A = B® 4 Frob. A = Frob’ B to be the Frobenius twist of, viewed

as a simplicial commutative ring; explicitly, ¥, — B denotes a free resolution &f over A, thenP, ® 4 Frob, A
computesB™). If Tor? (Frob, A, B) = 0 fori > 0, thenB() coincides with the usual (underived) Frobenius twist,
which will be the primary case of interest to us. The follog/oiagram and maps will be used implicity when talking
about these twists:

B

Frobp
Frk
f B(l) FrobA B
ol
A Frob 4 A

The main reason to introduce (derived) Frobenius twists §f) is thatdR 3,4 is naturally a complex oB(M-
modules; this can be seen directly in the case of polynortgabaas, and thus follows in general.
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3.1. Review of classical Cartier theory. We briefly review the classical Cartier isomorphism in thateat of free
algebras; see [DI87, Theorem 1.2] for more.

Theorem 3.2(Classical Cartier isomorphism).et A — F be a free algebra wittd an F-algebra. Then there is a
canonical isomorphism daf () -modules

C™' i A" Lpay a0 ~ H*(Q%,)4)
which extends to a gradefd(")-algebra isomorphism
ct. Dr>o0 NE LF(U/A[—/{?] — @konk(Q;?/A)[—k].

Proof. To defineC~!, we may reduce to the cage= F, via base change. Once ougj, we can pick a deformation
F of the free algebrd’ to W, together with a compatible liffrob : F — F of Frobenius. We then define

o Fb
p
in degreel, and extend it by taking exterior products; this makes séezmusdTob Qlﬁ/W — Qlﬁ/W is
divisible byp (as it is zero modulp). One can then check using local co-ordinates that thipedeiads to the desired
description ofi/”?(dR g/ ). O

Remark 3.3. Continuing the notation of (the proof of) Theorem 3.2, weentitat one can do slightly better than

stated: taking tensor products shows tHat: Q%/W — Q%/W is divisible byp?, and hence for i > 2. It follows

that the definition fo”—! given above leads to an equivalenceofmplexes
@20 A* Lpa ja[—k] = Q%4

i.e., that the de Rham complé)(;/A is formal. This decomposition depends on the choice@cﬁndfﬁ%, but the
resulting map on cohomology is independent of these choices

Remark 3.4. Theorem 3.2 is also true when the free algebra replaced by any smooth-algebraB. A direct
way to see this is to observe that both sides of the isomarphis® occurring in Theorem 3.2 localise for the étale
topology onF'1); since smooth morphismé — B are obtained from polynomial algebras by étale locatisgtihe
claim follows Zariski locally orSpec(B), and hence globally by patching. The underlying princigegof localising
the de Rham cohomology on the Frobenius twist will play a pnemt role in this paper (in the derived context).

3.2. Derived Cartier theory. We begin by computing the graded pieces of the conjugatatidtr in characteristip.

Proposition 3.5(Derived Cartier isomorphism)Let A — B be a map of',-algebras. Then the conjugate filtration
Fil;” ondRp, 4 is B)-linear, and has graded pieces computed by

Cartier; : grlc_onj (dRB/A) o~ /\iLB(m/A[—’L'].
In particular, the conjugate spectral sequence takes tha fo

EPY: H2p+q(/\pLB<1)/A) = Hpyq(dRp)a).
Proof. Let P, — B be the canonical free resolution fover A by free A-algebras. The associated graded pieces
gri”™(dRp,4) are given by totalisations of the simplicidtcochain complexes determined by Hi(Q;Dn/A)[—i].

By Theorem 3.2, one ha8'(Q}, /,)[—i] ~ Qlﬁi,”/A’ and hence
grgonj (dRB/A) ~ /\iLB(U/A[*’Z;].
The rest follows formally. O
Before discussing applications, we make a definition.

Definition 3.6. A map A — B of F-algebras is callecelatively perfecif BW — Bis an equivalence; the same
definition applies to simplicial commutatig,-algebras as well. A mag — B of Z/p™-algebras is calletelatively
perfect modulg if A ®z/,» F), = B ®z,,» F, is relatively perfect; similarly foZ,,-algebras.
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Example 3.7. Any étale map is relatively perfect, and any map betweefeptF ,-algebras is relatively perfect. By
base change, the mah, — W (R) is relatively perfect for any perfe#t,-algebrak.

The connection between the preceding definition and de Rhaaryt is:

Corollary 3.8. Let A — B be a map ofZ/p"-algebras that is relatively perfect moduto ThenLg,4 ~ 0, and
dRB/A ~ B.

Proof. By devissage, we may immediately reduce to the caseAhiatanF,-algebra, andd — B is relatively

perfect. We first show thatz,4 ~ 0. Indeed, for anyA-algebraB, the A-algebra mapB) — B induces the)
mapLpa 4 — Lpya (resolveB by free A-algebras, and use that Frobenius on the terms of the fretuties lifts

Frobenius onB). Thus, if BY) — B is an isomorphism, theh 4 and Lza) /4 must both be). The conjugate

filtration ondR g, 4 is therefore trivial in degree 0, so one obtaindR /4 ~ B ~ B, where the second equality
follows from the relative perfectness. O

Question 3.9. What is an example of ali,-algebra mapl — B with L, 4 ~ 0 but BY) — B notan isomorphism?
For A = F, itself, we are asking foF,-algebras3 with L, g, = 0 that are not perfect; note that such algebras have
to be discrete. It is conceivable that such examples do nist, &t we do not have a proof (except whén— B is
finitely presented). This question also arose in Scholzelk\\Sch11] on perfectoid spaces.

We use the derived Cartier isomorphism to show that derive®ldam cohomology coincides with classical de
Rham cohomology for smooth maps:

Corollary 3.10. Let A — B be a map o#%/p™-algebras, and leP, — B be a resolution o3 by smoothA-algebras
(not necessarily free). Then there is a natural equivalence

dRp/a ~ |Qp, 4l-
In particular, if A — B is a smooth map d/p"-algebras, therlR 5,4 ~ Q;B/A.

Proof. To see this, lef), — B be a resolution of3 by free A-algebras. By the cofibrancy 6f,, we can pick a map

Qe — P, lying over B (and hence an equivalence). This defines a diag, 4, — |Q;3./A|. To check that this map is

an equivalence, we may reduce to the casethand B are bothF,-algebras by devissage and and base change. In
this case, the claim follows from the convergence of the wgate spectral sequence and the fact that, 4, can be

computed usin@gl) or PV (see [llI71, Proposition 111.3.1.2]). O

Question 3.11.Observe that the proof above also shows that wher B is smooth map of',-algebras, then the
conjugate filtration onlR 5,4 coincides with theeanonicalfiltration. What can be said moduj¢?

Remark 3.12. Note that Corollary 3.10 is completely false in charactéris By Corollary 2.5, one hadR /4 ~ A
wheneverQ c A. On the other hand, il — B is smooth, therB itself provides a smooth resolution &f in the
category ofA-algebras, and the resulting de Rham cohomology group$ianesuial de Rham cohomology groups of
A — B (by[Gro66]) which need not be concentrated in degreéor exampleQ — Q[z, z~!] has a one-dimensional
(usual) de Rham cohomology group of degtdevith generatof%), but no derived de Rham cohomology.

Using the conjugate filtration, we can prove a connectivityneate for derived de Rham cohomology:

Corollary 3.13. LetA — B be amap o /p"-algebras such the(tZ}B/A is generated by elements for somee Z.
ThendRp /4 is (—r — 1)-connected.

Proof. To see this, first note that by devissage, we may reduce taafeetbat botd and B areF,-algebras. In this
case, via the conjugate spectral sequence, it suffices tithat/\" L 5 /4 is (n — r — 1)-connected for each. By
base change from®, note that a choice of generatorsﬂ)zm defines a triangle aB")-modules

F— Lgaya—Q

with F' a free module of rank, and@ a connected3!)-module. The claim now follows by filtering wedge powers
of L), 4 using the preceding triangle, and noting that” = 0 for a > r, while AlQis (b — 1)-connected. [

Next, we show that derived de Rham cohomology localisesi®ietale topology; note that there is no analogous
description for usual de Rham cohomology in characteristic
8



Corollary 3.14. LetA — B — C maps off,-algebras, and assume th&t — C' is étale (or simply thaB — C'is
flat with L, = 0). Then

dRB/A X @) cW ~ dRC/A and Hi(dRB/A) X p@) c® ~ Hi(dRC/A),
where all Frobenius twists are computed relativedo

Proof. The first statement implies the second by taking conomologyuaing:dR 5, 4 is a complex ofB(M-modules
while B — ¢ is flat since it is a base changeBf— C alongB — B). For the first, note that there is indeed
a natural maplRz,4 ®pa) o — dR¢y/a. The claim now follows by computing both sides using the agaje
spectral sequence and noting that s, /4 ® oy C ~ AYLca) /4 SINCELG)  pay = Frobly Loy = 0. O

Next, we relate the first differential of the conjugate spEcequence (or, rather, the first extension determined by
the conjugate filtration) to a liftability obstruction. L¢t: A — B be a map off',-algebras. Then one has an exact
triangle

gI‘ZO_nlj (dRB/A) — Fﬂ(CIOHJ (dRB/A)/FﬂZO_HQJ (dRB/A) — grgonj (dRB/A)
By Proposition 3.5, we havggonj(dRB/A) ~ AL g s 4[—q]. The above triangle thus determines a map
Obq : /\qLB(1)/A — /\qilLB(U/A[Q]
We can relateb; to a geometric invariant aB as follows:

Proposition 3.15. In the preceding setup, assume that alifof A to Z/p* has been specified. Then the map
coincides with the obstruction to lifting*) to A when viewed as a point &lap(L za) /4, B [2]).

Sketch of proofWe first construcbb, explicitly. Fix a free resolutiol’, — B, and letr<,€2}, ,, denote the two-
term cochain comple¥,, — Zl(Q}Dn/A); the associatiom — 7<,Q3, , defines a simplicial cochain complex

totalising toFilﬁ"“deB/A. Identifying the cohomology oﬂ;gn/A via the Cartier isomorphism then gives a exact
triangle of simplicial cochain complexes

P = 11Oy — L 1].

P,“)/A[*
Taking a homotopy-colimit and identifying the terms thewegi an exact triangle d8(!)-modules
BY = K = Ly al-1].

The boundary map g /4 [—1] — BM1] for this triangle realisesb; . To see the connection with liftability, observe

that the boundary mame/A[—l] — piM [1] defines a point oMap(L pY [2]) that iscanonicallyidentified

PV /A
with the point defining the obstruction to Iiftin@él) to 4, i.e., with the map

a b
LPT(I,l)/A[_l] = LA/Zp ®A Pfll) = Pél)[l]
wherea,, is the Kodaira-Spencer map fer — P,gl) andb,, is the derivation classifying the square-zero extension
A — A pulled back toP\; see [DI87, Theorem 3.5]. Taking homotopy-colimits thenvgh that the poinbb; €

Map(Lpa) /a5 BM2]) constructed above also coincides with the map
Ly al~1] % Lajz, ©4 BY % BO[1],

wherea = |a,| is the Kodaira-Spencer map fdr — B(Y), while b = |b,| is the derivation classifying the square-zero
extensiond — A pulled back taB(!); the claim follows. O

Remark 3.16. As mentioned in [lll], there is a mistake in [lI72VI11.2.1.4] where it is asserted that for any algebra
mapA — B, there is a natural isomorphis@, AP L) 4[—p] ~ dRp/4 rather than simply an isomorphism of
the graded pieces; we thank Beilinson for pointing out fdljus. Based on Proposition 3.15, a non-liftablel(tg)
singularity gives an explicit counterexample to the diain decomposition. A particularly simple example, due to
Berthelotand Ogus, id = F, andB = F,[z1, ..., z¢) (2}, x120 + 2324 + T526).
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The classical Cartier isomorphism has an important exb@n$i96, Remark 5.5.1]: the description of the coho-
mology of the de Rham complex of a smooth morphism in termsiftérdntials on the Frobenius twists lifts to a
description of the entire de Rham complex in the presené/pf-lift of everything in sight, including Frobenius.
We show next that a similar picture is valid in the derivedteat

Proposition 3.17(Liftable Cartier isomorphism)Let A - Bbea map of flaZ/p?-algebras such that there exist

compatible endomorphis@ and Fig lifting the Frobenius endomorphisms 4f= Z@Z/pz F,andB = B ®z/p>
F,. Then there exists an equivalence of algebras

Cartier_l tDr>0 /\lC LB(l)/A[_k] ~ dRB/A
splitting the conjugate filtration from Proposition 3.5.

Proof. Our proof uses the model structure on S|mpI|C|aI commLmaltmgs due to Quillen [QUI67] segl.l. The
liftability assumption on Frobenius shows thaFLf — B denotes a freel-algebra resolution oB, then there exists
a maph P, — P, which is compatible with, and Fg up to homotopy, and has a modyloreduction that

is homotopic to the Frobenius endomorphismigf := P, ®z/p> L/p. Now setP.( ) = P, ®i A, and let

g : ﬁ.(l) — P, denote the induce&—algebra map. Observe thﬁ’f(l) is cofibrant as arﬁ-algebra (as it is the

base change of the cofibraﬁtalgebraﬁ along some mapﬁ — Z), and the reduction module mapF. — P, is
a fibration (since it is so as a map of simplicial abelian gg)upJsing general model categorical principles (more
precisely, the “covering homotopy theorem,” see [Qui67aghbr 1, page 1.7, Corollary]), we may replaceith a
homotop|cA algebra map to ensure that the moduteduction ofg is equalto the relative Frobenius md‘n(l — P,.
With this choice, the induced map

HCE Q%‘m — QP./A
reduces to thé map modulg. Taking wedge powers and using Lemma 3.18, all the inducgsma

k (7~
Q%(g") : Qm(l)/A%Qp./A

are( for & > 1. In particular, there exist well-defined maps

1
— M) 0l
p

k
PY /A — QP./A?

all 0 for k£ > 1, with the property that the square

1.0+
5 (@)
_—

1 1
QP.<1>/A Po/A

| |
1.0%(5%)

Qfgm/A - Q?D./A

commutes. Since the bottom mapighere is a well-defined map of double complexes
e <1>/A[ 1] = Qp, /4
which totalises to give a map
Lpwjal=1] = dRpa.
The Cartier isomorphism in the smooth case shows that tleegireg morphism splits the conjugate filtration in degree

1. We leave it to the reader to check that taking wedge powetsiaimg the algebra structure dR 5,4 now defines
the desired isomorphism

Cartier ' : Dr>0 Nk LB(l)/A[*k] — dRB/A. O
The following lemma used in the proof of Proposition 3.17.

Lemma 3.18. Let R be a flatZ/p*-algebra. Letf : K; — Ko be a map of simplicialz-modules. Assume that
f ®r F, is0 as a map of complexes. M has projective terms, thex* f = 0 for k > 1.
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Sketch of proofThe assumption that is 0 modulop implies thatf factors as a map

K1 — P K2 ‘i) KQ.
Moreover, sinceK is projective, the derived exterior powers ffare computed in the naive sense, without any

cofibrant replacement of the source. The%( f) factors through\*(i). However, itis clean® (i) = 0 for k > 1, and
so the claim follows. O

Remark 3.19. The proof of Proposition 3.17 made use of certain choicesthauend result is independent of these
—~ ~ —

choices. If we have a different free resoluti®p — B and a different liftg’ of Frobenius onP, compatible with

the chosen lift on3, then one can still run the same argument to get a decomposifidR,4. The resulting

map AkLB<1>/A[—k] — dRp/4 is homotopic to the one constructed in the proof above, sihedlifts g and g’

are homotopic as maps a?—algebras, i.e., we may choose Er-nlgebra equivalencE — 15./ lying over B that
commutes withy andg’, up to specified homotopy.

Remark 3.20. Some homological analysis in the proof of Proposition 3.&gdmes simpler if we specify lifts t#,,
insteadZ/p?. Indeed, onc&,,-lifts have been specified, the resulting map on forms (tfacgyue of the map labelled
Q1(g*) above) is divisible by as a mapand hence the mag¥’(g*) will be divisible byp* as maps for alk, without
modifying the original choice of as we did at the start of the proof.

Using Proposition 3.17, we can give an explicit example ofaphism ofF,-algebras whose derived de Rham
cohomology is not left-bounded. In particular, this showattderived de Rham cohomology cannot arise as the
cohomology of a sheaf of rings on a topos. In future work [Bhale will construct aderived crystalline sitevhich
will be a simplicially ringedoo-topos functorially attached to a morphisin X — S of schemes, and show that the
cohomology of the structure sheaf on this topos is candgitsdmorphic to derived de Rham cohomology.

Example 3.21(Non-coconnectivity of derived de Rham cohomolagypt A be aF,-algebra with the following
two properties: (a) the cotangent complex r, is unbounded on the left (i.e., the singularityec(A) is not Ici),
(b) the algebrad admits a lift toZ/p? along with a lift of the Frobenius map. For example, we caretdk=
F,lz,y]/(?, 2y, y*) with the obvious lift (same equations), and obvious Frobetift (raise to they-th power on the
variables). Then the derived Cartier isomorphism shows tha

dRA/Fp >~ Bi>0 A LA/FP[_@']-
In particular, the comple®R 4 /x, is unbounded on the left.

Next, we discuss the transitivity properties for derivedRteam cohomology. Our treatment here is unsatisfactory
as we do not develop the language of coefficients in this paper

Proposition 3.22. Let A — B — (' be a composite of maps &¥,-algebras. ThenrlR,4 admits an increasing
bounded below separated exhaustive filtration with gradedgs of the form

dRp/4 @Froby, B Frob’y (A" Leyp[—n]),

where the second factor on the right hand side is the basegehaf\" L, g[—n], viewed as arB-module, along the
mapFrob, : B — Frob’ B.

Proof. Let P, — B be a polynomiald-algebra resolution of3, and letQQ, — P, be a termwise-polynomiap,-
algebra resolution of. ThendR¢ /4 ~ |QZ?./A|. For eacht € A°PP, transitivity for de Rham cohomology (along
smooth morphisms, see [Kat7§8]) endows each complaxggk_/R with an increasing bounded below separated ex-
haustive filtratiort'il, given by the (usual) de Rham compleXk;k_/A (Tgnﬂzgk/Pk ), where@an?k/Pk) is the canon-
ical trunctionin degrees n of QZ?k/Pk equipped with the Gauss-Manin connection for the compakite P, — Q.

The graded pieces of this filtration are then computed todéutsual) de Rham complex@$, |, (H" (Q¢, /p, )[—n]).

By the classical Cartier isomorphism, the groHﬁ(Qz?k/Pk) is computed agrobp, Q?gk/Pk’ and the Gauss-Manin
connection coincides with the induced Frobenius descemiextion; see also [Kat70, Theorem 5.10]. Lemma 3.24

below then gives an identification
Po A (HM(QD, ) p,)[=n]) = Qp, /4 ®Frobs, b, (Frob4 Q0 /p [=1]) = Q4 ©rvoby p, Froby (A" Lo, /p [—n]).-
The desired claim now follows by taking a homotopy-colimieok € A°PP, O
11



Remark 3.23. Let A ©» B % ( be two composable maps &f/p™-algebras. Proposition 3.22 is a shadow of an
isomorphismiR s (dR,) ~ dR 4. ¢; we do not develop the language here to make sense of thefedtdide, but simply
point out that in the case thgtandg are both smooth, this is the transitivity isomorphism forstalline cohnomology
using Berthelot’s comparison theorem between de Rham gsthdliine cohomology (and Corollary 3.10). A similarly
satisfactory explanation in general will be given in [Bhab]

The following general fact about Frobenius descent conmestvas used in Proposition 3.22.

Lemma 3.24. Let f : A — B be a map off",-algebras that exhibits$3 as a polynomiald-algebra. LetM be a
BM-module. Then the de Rham cohomology of the Frobenius desmemection orfrob} M takes the shape:

Proof. This lemma is essentially tautological as the connectioﬁmb}M is defined to be the first differential in the
complex appearing on the right above. O

3.3. Connection with crystalline cohomology. Classical crystalline conomology is very closely related¢ Rham
cohomology module™: the two theories coincide for smooth morphisms. We willwghibat there exists an equally
tight connection classical crystalline cohomology andvéel de Rham cohomology: the two theories coincidddor
morphisms. In future work [Bhab], we enhance this resultdystructingderived crystalline cohomolodkat always
coincides with derived de Rham cohomology, and also wittcthssical crystalline cohomology for Ici maps.

We start off by constructing a natural transformation fraenivked de Rham cohomology to crystalline cohomology.
For simplicity of notation, we restrict ourselves to theradfcase.

Proposition 3.25. Let f : A — B be a map ofZ/p"-algebras. Then there is a natural map of Hodge-filtered
E.-algebras

Compp s : dRpja — RI((B/A)erys, Ocrys)
that is functorial inA — B, and agrees with the one coming fr¢Ber74, Theorem IV.2.3.2vhenA — B is smooth
(via Corollary 3.10).

We remind the reader that the right hand side is the crysetliohomology o$pec(B) — Spec(A), and is defined
using nilpotent thickenings dB relative toA (asZ/p™-algebras) equipped with a pd-structure on the ideal of iefin
compatible with the pd-structure dp); see [Ber74, Chapter IV].

Proof. Let P, — B be a free simplicial resolution d over A. For eachk > 0, the mapP, — B is a surjective map
from a freeA-algebra ontd3; let I, C P, be the kernel of this map. Since we are working dép”, it follows from
Berthelot’s theorem (see [Ber74, Theorem V.2.3.2]) thahaee a filtered quasi-isomorphism

Qb (B/4)/a @, Dp,(Ik) = RI((B/A)crys; Ocrys)
whereDp, (I};) denotes the pd-envelope of the idéatompatible with the standard divided powergoms k varies,
we obtain a map of simplicial cochain complexes
Comp g 0 Qp, /4 — Qp, /4 ®p, Dp, (1s) 1)
By Berthelot's theorem, the right hand simplicial objedjisgsi-isomorphic to the constant simplicial cochain caxrpl
on the crystalline cohomology @ relative toA. More precisely, the natural map
Q%74 @y Dpy(Io) = [, 4 @p, Dp, (ker(Ps — B))|

is an equivalence with both sides computing the crystatimt@omology ofA — B. The map@omp;g/A then defines
amap

GompB/A :dRpja — RI((B/A)cryss Ocrys)
in the derived category. This morphism respects the Hodgatfin Fil}, as the map (1) does so. Itis clear from the
construction and the proof of Corollary 3.10 that this mapeag with the classical one whein— B is smooth. [

Remark 3.26 (Lurie). Remark 2.2 can be used to give an alternate constructioneofnipCompy, 4. For I’ €
Algir/ee, Berthelot’s theorem [Ber74, Theorem V.2.3.2] gives a raitmapQ}/A — Rl erys((F/A)cryss Ocrys)- If
one defines the crystalline cohnomologyi®fe sAlg ,, as that ofry(B), then general properties of left Kan extensions
give amaplRp,4 — Rlcrys((B/A)crys, Ocrys) forany B € sAlg .
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The goal of this section is to prove the following theorem:

Theorem 3.27.Let f : R — B be a map of fla# /p"-algebras for some > 0. Assume thaf is Ici. Then the map
Comp g, i from Proposition 3.25 is an isomorphism.

Remark 3.28. We suspect Theorem 3.27 is true without the flatness conditia? (or, equivalently, onB since f
has finiteTor-dimension). However, we do not pursue this question here.

Our strategy for proving Theorem 3.27 is to first deal with #pecial case thaB = R/(f) for some regular
elementf € R, and then build the general case from this one using prodBetshelot’s comparison theorem, and
Corollary 3.10. The following special case therefore fothesheart of the proof:

1»—)0

Lemma 3.29. Let A — B be the mafF,[z] "= F,. ThenComp, 4 from Proposition 3.25 is an isomorphism.

The idea of the proof of Lemma 3.29 is very simple. The lifeaBlartier isomorphism from Proposition 3.17 lets
one explicitly computelR 3, 4, While the crystalline cohomology can be explicitly comgaiby Berthelot's theorem
[Ber74, Theorem 1V.2.3.2]; both sides turn out to be isonharpo F,(x), the free pd-algebra in one variable o¥gy.
Checking thatomp 4 is an isomorphism takes a little tracing through definitideading to a slightly long proof.

Proof. We fix theZ /p2-lift A := Z/p*[z] — Z/p*> =: B of A — B together with the lifts of Frobenius determined by
the identity onB andx — 2P on A. Using the liftable Cartier isomorphism, the precedingicb@ives a presentation

dRpa ~ @iz A Ly jal—i]
as algebras. Let = (x) C A denote the ideal defining — B. One easily computes th&!) ~ F,[z]/(2?) as an
A-algebra, and hence
a:Lpaa~IP/17P[1] ~ BW . y1]

is free of rankl on a generatoy in degreel that we choose to correspondit € 17 /1%? under the isomorphisia.
Computing derived exterior powers then gives a presemtatio

dRp/a = GizoFplz]/ (") - 7i(y) @)

as an algebra. On the other hand, since the crystalline cologmof A — B is given byF,(z) (by [Ber74, Theorem
V.2.3.2], for example), we have a presentation

RI((B/A)erys; Ocrys) = Fp(x) = @izoFp[z]/(aF) - 7ip() ©)

as algebras. We will show that the m@pmp ;4 respects the direct sum decompositions appearing in fas1(@)
and (3), and induces an isomorphism on each summand; thesidedirst understand the image ¢f and then its
divided powers.

Claim 3.30. The mapComp 4 sendsy to —v,(z) € Fy(z).

Proof. First, we make the derived Cartier isomorphism explicit bpasing particularly nice free resolutions and
Frobenius lifts as follows. LeP, — Z/p? be the bar resolution & /p? as aZ/p?|x]-algebra as described in, say,
[lye07, Construction 4.13]; see Remark 3.31 for a more fom&tdescription. The first few (augmented) terms are:

(.. ==7/p?[r,t] —= Z/pQ[l’]) — Z/p?

where the twdZ /p?[x]-algebra maps fror /p?[x, t] — Z/p*[z] are given byt — z andt — 0 respectively. This
resolution has the property that the terfsare polynomial algebra®/p[z][X,,] over a setX,, with n elements,
and the simplicialZ /p?[x]-algebra magZ/p*[z][X,] — Z/p*[x][X,,] lying over a mapgm] — [n] € Map(A) is
mduced by a map of sefs,, — X,,, U{z,0}. In particular, the mam : Z/p? [ 11X ] — Z/p [x ][ ) defined by
Frob, (x) = 2P andFrob,, (z;) = 2% foreachr; € X,, definesan endomorphldﬁnob P, — P, of P, which visibly
lifts Frobenius modul@, and also lies over the chosen Frobenius endomorphistiof[z]. SetP, = P, ®z/p> Fp.
We will use the free resolutiok, — F,, together with the lift?, and the Frobenius endomorphism described above
in order to understand the derived Cartier isomorphism encbimposition witt€omp 3 4 -
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The elementit € Qp ([, realises a generator & ' (Lg, /r,[»]) When we use, p . to calculate
Ly, /¥, [«)- The Frobenius pullback of this class then determines argm'ra)fH—l(L(FP[I]/(M))/FP[I]) which coin-
cides withy; this can be easily checked. Chasing through the definitidheoCartier isomorphism, we find that the
image ofy in dR 4 is given byt?~1dt € Q%p[x 1)/F, 2] when the latter group is viewed as a subgroup of the group
of 0-cocyles indRp/4 = |Q;3./A|. On the other hand, after adjoining divided powers ahdz (i.e., moving to the
crystalline side following the comparison recipe fr¢8125), the elemen?—'dt ¢ Qle[x,t]/Fp[x] OF, (2,1 Fp(z,1)

may be written as
-t = dy (0= 11p(0)) = (0= D) dy(p(8) = do(3(1),
whered, : Fp,(z,t) — Q]l_,p[x_ﬂ/Fp[x] ®F, [z, Fp(z,t) is the vertical differential in the first column of

1%, /7, (2] @P. Dier(Po—F,)(Fs)l,

the bicomplex computing the crystalline cohomologylofiz] — F,, via the resolution?,. Since the sum of the
vertical and horizontal differentials iin cohomology, it follows that the image ¢f~'dt in crystalline cohomology
coincides with the element

—dy(p(t)) € Fp(x).
The horizontal differentiady : F,(z,t) — F,(z) is the difference of th&,[z]-algebra maps obtained by sending
to 2 and0 respectively, and so we havely (v, (t)) = —v,(z), as claimed. O

By Claim 3.30, the magomp,, induces an isomorphism of the first two summands appearifgrmulas (2)
and (3). The rest follows by simply observing that

—1)k . gkp
(= (@) = (k,l)w = Yip () - u,

whereu is aunitin F; the point is that, := (,f,pll is an integer, ana,;, andn; differ multiplicatively by a unit
P
modulop. Thus,Compy, 4 induces isomorphisms on all the summands, as desired. O

Remark 3.31. The bar resolution used in Lemma 3.29 may be described maootdially (in the language df4.2)
as follows. LetC = EN be the category with object s&, and a unique morphism; — ns if no —ny > 0. The
monoid law onN makesC a strict symmetric monoidal category, and the obvious maphject sets defines a strict
symmetric monoidal functdN — €. Passing to nerves gives a mdp— N (C) of simplicial commutative monoids.
In co-ordinates N (€); = N**! with the identification sendin@no, . ..,n;) € N**! to the k-simplex of € with
verticesng, ng + n1, ..., ng +n1 + --- + np. The mapN — N(C), = N**lis simplyn +— (n,0,0,...,0),
i.e., mapn € N to the constant-simplex based at € €. The categor has an initial object, so the augmentation
N(C) — «xis aweak equivalence (see [Qui73, Corollary 2, page 84]xedeer, the explicit description makes it clear
thatN — N(C) is a termwise freéN-algebra (using [Qui67, Remark 4, page 4.11], one can alsokcthatV(C)

is cofibrant insMony;/). By Proposition 4.4, the induced free algebra ré@apN] — Z[N(C)] in sAlgy .y, is a free
Z[N]-algebra resolution dZ[N] N3tz IdentifyingZ[N] ~ Z[t] vial € N — t gives an explicit fre&[t]-algebra
resolution ofZ]t] 2! 7. The reduction modulp? of this resolution (up to a change of variabtes: ¢ + 1) was used
in Lemma 3.29; the Frobenius lift is induced by the multigtion byp map on monoids.

Remark 3.32. The proof of Lemma 3.29 “explains” the two algebra isomospis

(Folel/ (@) (v) = @:20F [2)/(27) - 3ip () = Fpla),
where the first one maps;(y) to v, (x). Indeed, the first one is the usual splitting of the pd-filtnaton a divided
power polynomial algebra, while the second one arises bgyiliging the conjugate filtration ofiRr, /x|, provided
by Z /p?-lifts of Frobenius. Iterating this procedure wiify replaced byF,[]/(«?) gives an isomorphisrof algebras
F,[zo, 1, 22,...]/(zh, 2}, 2b ... ) ~ F,(x)

defined viaz; — (v, 0y, 0 - -+ 0 p)(x), where the composition isfold with -, being the identity. We do not know
a derived de Rham interpretation of this isomorphism.

5This isomorphism seems to be known to the experts, and wesvgised by the author in conversation with Andrew Snowden.
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Remark 3.33. A theorem of lllusie [IlI72, Corollary VIII.2.2.8] shows #t Hodge-completed derived de Rham co-
homology always agrees with Hodge-completed crystallotgomology. Lemma 3.29 can therefore be regarded as
decompleted version of this theorem. The difference betwiee Hodge-completed and the non-completed theories
is, however, rather large: the latter is degenerate in cheniaticO by Corollary 2.5, while the former is not.

Question 3.34.1n the presentation (3), the Hodge filtratibii}, coincides with divided-power filtration on the right,
while in the presentation (2), the conjugate filtration iglised by setting?ilc"nj to be the firstn pieces of the direct
sum decomposition on the right. Thus, we h&®™ N Fil’2 ~ gréo™ ~ EBE”Z’Z 'er?, . What can be said about the
relative positions of the Hodge and conjugate f||tr::1t|ongeneral’>

Remark 3.35. A slightly less computational proof of the main result§8f29 can be given as follows; it comes at
the expense of more careful bookkeeping of homotopies,sae iwe largely eschew below. Illusie’s theorem for the
Hodge-completed comparison isomorphism [llI72, CorgiNHI.2.2.8] gives a canonical isomorphism

AR, /r, () /Fil}; ~ F,(z)/Fil},
for all k. In particular, there is a canonical equivalence of exaangiles

dR

. . oo . .
Fil}, /Fil} ™ (AR, v, r]) — Fil}; /Fil5; (AR, /7, (27) —2 Rtk Rk (dRr, /r, () [1]

- L

Filfy /Fily, ™ (Fy (x)) ——— Filfy /Fil,” (F, () Fily™ /Fil ™ (F (2))[1],
for all values oft andj. Now we claim:
Claim 3.36. The mamﬁf; is naturally equivalent t@, for all values;j as a map of complexes Bf,[z]-modules.

Proof. Identifying terms explicitly, the claim amounts to showithgt the short exact sequence

L —— (v+1)p(@)) [ (Vr2)p(T)) ———— (Vip(®)) / (V(j42)p () ——— (Vjp(2)) / (Vi +1)p(2)) —1

1 ———Fyla]/ (") - j41(p) ——= FIP (Fy (@) /FiLlV 2P (Fy () —— Fyla]/(aP) - 7y () —— 1

is split in the category of,[z]-modules. This follows from fact that;,(x) € Fil’?(F,(z))/FilV+2P(F,(z)) is
killed by 27 (sincex? - v ,(xz) = (j + 1) - p - vj+1)p(x) = 0), and hence defines a splitting of the surjection above in
the category oF', [x]-modules. O

We remark that there is some ambiguity in the choice of gmijft used above, but this will cancel itself out at the
end. We will use this information as follows. First, we palfii totalise the (say canonical) bicomplex computing
dRF, /F,[«)» I-€., We totalise rows throughp — 1, rowsp through2p — 1, etc.; the result is still a bicomplex whose
associated single complex computéy /r,,]- Moreover, the rows are of a very specific form: thh row is
naturally quasi-isomorphic to

K; i=Fil)} (AR, /p, 1)) /Fill ™7 (AR, /5, 1)) 1],
(and hence a perfect complexBf[z]-modules), and the differential
K' — Kj+1

is identified W|th6d§p which is itself isomorphic td]c;y;, and hence equivalent toin a manner prescribed as above.

We leave it to the reader to check that any such bicomplexismiaally split, i.e., we have a canonical equivalence
O K;[—J] = | K|

Putting it all together, we obtain an equivalence

dRr, k(0] = Djezs, Filyy /Fil ™7 (AR, /p, 1)) = ®jezs Filff /Filly ™ (R crys (Fy /Fyl2]), Ocrys)) = Fya),

where the first map is non-canonical and constructed usmgltlove splittings, the second map comes from lllusie’s
theorem, and the last map comes from explicit constructioa;choices that go into constructing the last map are
exactly the ones that go into making the first map as well.
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Next, we show that pd-envelopes behave well under takirtglsiei tensor products; this is useful in passing from
the situation handled in Lemma 3.29 to complete intersastad higher codimension.

Lemma 3.37. Let A — B = A/I be a quotient map dF,-algebras. Assume thdtis generated by a regular
sequencds, ..., f, of lengthr. Then one has

Da(I) = Ax1, .. yxe) /(21 = f1, -2 — fr) = @iAx) [(x — fi) = @iDal(fi)
where all tensor products are derived.
Proof. The elementg; define the Koszul presentation
NF S F 10

whereF = &!_, A - x; is a free module of rank, the mapF’ — I is given byz; — f;, and the map\> F — F is the
usual Koszul differential determined by A x; — f;x; — fi;x;. Exactness properties df* (see [BO78, Corollary
(A.5)]) give a presentation

iy (DY (NF) @4 T3 (F)) = TR (F) — T4(1) — 0.
This leads to an algebra presentation
LA(l) = T (F)/({fizi — fizj)ig)-
The pd-envelop® 4 (I) is then obtained by the formula
Da(l) =T%I)/(z1 — fr,...o2p — fr) 2 DU(E)/((fizi — fizj)ig e — froo o 20 — fr).
To simplify this, we observe that for each paiy and each positive integer, we have
W fimi = fiz;) € (wi — fo, x5 — f3) C (w1 = fr, o 2 = [r)

in the algebrd™, (F). Indeed, this follows by expanding the left hand side modtideal(z; — f;,z; — f;), and
using the equality, (z;) - © = yu(ziz;) = 2} - o (x;). Thus, we can simplify the preceding presentatioaf(/)
to write

Do) =T%(F)/(x1 — f1,-yxr — fr) = Alxy, ..o ze) (1 — f1,0 00 T — fr).
Using the regularity of eacl, the same reasoning also shows that
Da(fi) = Alwi) [/ (xi = [i)-
It remains to check that
@i A(zi) /(@i — fi) = Alzr, .. zp) /(@ = fr, oo @e — fr).

The natural map from the left hand side to the right hand saterally realises the latter ag of the former. Hence,
it suffices to check that the left hand side is discrete. Thelegity of f; implies the regularity oft; — f; € A(x;).
Hence, we have a chain of isomorphisms (with derived tensmiyrts)

Alw) /(i — fi) = A®p,p (Fpltl(z:) "5 Fyltlla:)) via e f;
= A QF,[t] F,(t)
= Aer, (Dsez, FlH]/ () - 13 (1))
= Sjezs A/ ()7 (i),

where the last equality uses the regularityféfe A. In particular, each ringl(z;)/(x; — f;) is a free module over
A/(f?). The desired discreteness now follows by commuting theorepsoduct with direct sums, and using that
fr,..., fPis aregular sequence singg ..., f, is so. O

We need some some base change properties of crystallinenoddwgy. First, we deal with pd-envelopes.

Lemma 3.38. Let A — B = A/I be a quotient map of flaf/p"-algebras. Assume thdtis generated by a
regular sequence. Then the pd-enveldpg 1) (compatible with divided powers gn is Z /p™-flat, and its formation
commutes with reduction moduypoi.e., D (1) @zpn Fp = D4y, (I + (p)/(p))-
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Proof. LetI = (f1,..., f,) be generated by the displayed regular sequence. The praehuiha 3.37 shows that
Da(I) ~ Alxy, .. ze) /(1 — f1,00 020 — fr).
Thus, to show flatness ovEr/p™, we may reduce to the cage- 1, i.e.,I = (f) for some regular elemerft We need

to check thatd(x) /(x — f) is Z/p"-flat. The regularity off and theZ /p"-flatness ofd imply that (A(:c) =y A<x>)

isaZ/p"-flat resolution ofD 4 (I). Since anyZ /p™-module with a finite flat resolution is flaf) 4 (1) is alsoZ /p"-flat.
For base change, it now suffices to show that & A is regular, then so is its image i/p, i.e., the sequence

0= A/p Afp— (A/f)/p—0

is exact. Sinced is Z/p"-flat, the regularity off shows thatd/ f has finite flat dimension ovet/p™, and hence is
flat as above. The desired exactness then follows from thishiag OfTorlz/p (A/f,F,). O

Next, we show that the formation of crystalline cohomoloffgie commutes with reduction moduyto

Lemma 3.39. Let A — B be an Ici map of fla/p™-algebras. Then the formation &T' ((B/A)cys, O) commutes
W|th - ®Z/pn Fp.

Proof. Choose a factorisatiod — F — B with A — F' a polynomial algebra, ané’ — B an Ici quotient by
a regular sequence; the reduction modulof this factorisation defines a similar presentation®fp by free A/p-
algebras. Then by Berthelot's theorem [Ber74, Theorem.®v2, RT'((B/A)ays, O) is computed by the de Rham
complexQ3. , ®4 Da(I), and similarly modulg. By Lemma 3.38 and the freeness overf eachQ, ,, the
formation of this complex commutes with reduction modulgo the claim follows.

The preceding few lemmas and Lemma 3.29 combine to show mstanices of Theorem 3.27.

Corollary 3.40. LetA — B = A/I be a quotient map of flé& /p™-algebras. Assume thdtis generated by a regular
sequence. Then the m@8pmpy, 4 from Proposition 3.25 is an isomorphism.

Proof. We want to show thalRp/4 — RI'((B/A)cys, O) is an isomorphism. Since the formation of both sides
commutes with derived base change (by Proposition 2.7 anmidria3.38), we may reduce (by devissage) to the case
that A and B areF,-algebras, and = (fi,..., f;) is generated by a regular sequence. The target is computed as
D 4(I) by Berthelot's theorem [Ber74, Theorem 1V.2.3.2]. Profiosi2.7 and Lemma 3.37 then immediately reduce
ustothe case = 1, i.e. I = (f) for some regular elemerftc A. In this case, the target B (f) ~ A(z)/(x — f).

To compute the source, observe that we have a commutatieeesqu

F,l] =L~ 4
ltHO l
F, — A/f.

This square can be checked to be a (derived) pushout usimggbleition ofF',, given by multiplication byt onF, [¢].
By base change in derived de Rham cohomology and Lemma 3e28btain

dRp/a = Fylt) @, A~ (Fyltl{r) 5 By[l(@) @ A~ (Ala) "5 A2) = Ala)/(x — [) =~ Da(f),

as desired; here the second-to-last isomorphism comestfremegularity ofx — f € A{(x) which, in turn, comes
from the regularity off € A. O

The next lemma proves a Tor-independence result for Iciigutst, and is here for psychological comfort.

Lemma 3.41. Let A — B = A/I be a quotient map dF,-algebras. Assume thdtis generated by a regular
sequence. TheR(") is discrete, i.e.Frob, A and B are Tor-independent ovet.

Proof. The assumption implies thd@ ~ ®;A/(f;); here the tensor product is derived and relativeltcand/ =
(f1,--., fr) with the f;'s spanning a regular sequence. The desired Tor-indepeadeliows from the following
17



sequence of canonical isomorphisms:

Frob.A®a B = (Frob,A®a A/(f1)) ®rrob. 4 - Orvob. 4 (Frob.A®@4 A/(fy))
= Frob.(A/f{) @Frob. 4 - Frob, 4 Frob.(A/ fF)
—  Frob.((A/(fP) @4 ---®a A/(f7))
= Frob.(A/(f,..., 7).

Here all tensor products are derived, and the last equalitg the regularity of the sequer(@®, ..., /7). O

Next, we discuss the conjugate filtration on pd-envelopdsdedls generated by regular sequences; this is pure
algebra, but will correspond to the conjugate filtration enved de Rham cohomology once Theorem 3.27 is shown.

Lemma 3.42. Let A — B = A/I be a quotient map dF,-algebras. Assume thdtis generated by a regular
sequence. The,(I) admits a natural increasing bounded below (atseparated exhaustive filtratidril;”™ by
B -submodules, with graded pieces given by

&1 (Da(D) = T (ro (17 @4 BY)) = Froby (Ts(1/1%)),
wherellPl = (fP ... fP) denotes the Frobenius-twisted ideal.

Note that the natural mag — D4 (I) sendsI”! to 0 asf? = p-~,(f) = 0forany f € I, soD4(I) may be
viewed as aB(1)-algebra. By Lemma 3.41, the algel#&") is also discrete, and thig(")-moduler, (1P @ 4 BM) is
a locally free module of rank, wherer is the length of a regular sequence generafingloreover, thisB")-module
can be identified with the pushout 6f 12 alongFrob, : B — B™), which explains the last equality above.

Proof. The filtration can be defined by settiigj1®™ (D 4(I)) to be the B(")-submodule ofD 4(I) generated by
vip(f) for f € I andk < n. To compute this filtration, observe thatlif= (f) with f € A regular, then, as in the
proof of Lemma 3.37, one has

Da(I) ~ ®iezso A/ (f7) - vip(2).

Under this isomorphism, one hBE™ (D 4 (1)) ~ @7, A/(f?) - vnp(f), i-€., the conjugate filtration coincides with
the evident filtration by the number of factors on the dirachsdecomposition above. The claim about associated
graded pieces is clear in this case well. The general cassviofrom this special case and Lemma 3.37. O

Remark 3.43. If A — B = A/I is a quotient by an idedl generated by a regular sequence, then ond hag ~
I/I%1], and L a ~ mo(IP! ©4 BM)[1] by Lemma 3.41. Thus, the graded pieces of the conjugatetifiira
appearing in Lemma 3.42 may be rewritten as

gri ™ (Da(1) = T (ro(IP @4 BW)) = 'Ly 4[],

which brings it much closer to the derived de Rham theory lmpBsition 3.5. In [Bhab], we will define a notion of a
“derived pd-envelopel.D 4 () of an arbitrary ideal C A in such a way that the analogue of the previous statement
is true without the assumption thats generated by a regular sequence.

The conjugate filtration introduced in Lemma 3.42 respém$3auss-Manin connection if the base comes equipped
with derivations. The following lemma identifies the inddamnnection on the graded pieces.

Lemma 3.44. Let A — B = A/I be a quotient map dF,-algebras. Assume thdtis generated by a regular
sequene. LeR — A be another map oF,-algebras. Then the conjugate filtratidfil,”™ from Lemma 3.42 on
D 4(I) is compatible with the naturaR-linear connectionD (1) — Da(I) ®4 QL/R- The induced connection on

greoi(D 4 (1)) ~ Frob I (1/12) coincides with the Frobenius descent connection.

Proof. The first claim follows directly from the description of thergugate filtration given in the proof of Lemma
3.42. For the second part, we first explain what the Frobategsent connection is. The natural FrobeniandR
18



define a diagram of simplicial commutative rings

R—l 49 _p

lPYobR lP%obR Frobp
b

R —=% Frobj, A —— Frob; B

d lFYobf c

A——25 Frob% B
g

Frob,

B.

All squares here are cartesian. Now the fieeb’, B-modulegre®™ (D 4 (1)) is identified withA™ L ,[—n] by Remark
3.43. In particular, as ad-module, this module is the pullback alofgob; of the Frobj, A-module A™ Ly[—n],
viewed as arfroby, A-module via restriction of scalars aloag For anyFrobj, A-moduleM, the pullbackirob} M
acquires a connection relative &) which is called the Frobenius descent connection. We ligavéhe reader to check
that this Frobenius descent connection coincides withtdredsird one on (conjugate graded pieceddf) ). O

The de Rham cohomology of a module equipped with a connectiaring from Frobenius descent takes a par-
ticularly nice form, and this leads to a tractable desaiptf the de Rham complex associated to the Gauss-Manin
connection acting on the conjugate filtration.

Lemma 3.45. Let R, A and B be as in Lemma 3.44. If the md&p— A exhibitsA as a freeR-algebra, then one has
an identification of de Rham complexes

AR/ r(gry™™ (Da(I))) ~ dRa g @Frobs 4 Frobp (TE(1/17)),
where the second factor on the right hand side is the basegehafl'; (1/1?), viewed as am-module, along the
mapFrobg : A — FrobjA.
Proof. This lemma follows from Lemma 3.44 and Lemma 3.24. O
We now have enough tools to finish proving Theorem 3.27.

Proof of Theorem 3.27Let R — A — B be a composite map of fl&/p"-algebras, withR — A a free R-algebra,
andA — B = A/I a quotient map with C A an ideal generated by a regular sequence. We want to show that
Compp,p : dRp/r — RI((B/R)erys, O) is an isomorphism. Since the formation of either side coneswufith base
change (by Proposition 2.7 and Lemma 3.39), we may reducddbigsage) to the case= 1, i.e., we may assume
that all algebras in sight aié,-algebras. By Proposition 3.22R g,z admits an increasing bounded below separated
exhaustive filtration with graded pieces:

Q% r(ers?™ (AR pa)) = AR )R @Frobya Froby (A" Lpa[—nl). (4)

Transitivity for crystalline cohomology together with Lema 3.45 show thaRI'((B/R)cys, O) admits an increasing
bounded below separated exhaustive filtration with termargby

Q;/R(grgoni(DA(I))) ~ dR /R ®Frobs, 4 Frobp (D (I/17)) ~ dR 4y g @Frobs,a Frobn (A" Lg/a[-n]), (5)
where the last equality uses Remark 3.43. We leave it to thdereto check thatompy, 4 respects both these
filtrations, and induces the identity isomorphism betweBratd (5). O

Remark 3.46. The identification of crystalline and derived de Rham cohlmgyprovided in Theorem 3.27 answers
[II72, Question VIII.2.2.8.2] in the case &/p™-algebras. The case of characteriétitas a negative answer §2.5,
and hence this seems like the best possible answer.

A consequence of Theorem 3.27 and the Frobenius action atadiye cohomology is the Frobenius action on
dR4/(z/pm) for flatIci Z/p™-algebrasA. In fact, this is a completely general phenomenon:

Proposition 3.47. Let A be aZ/p"-algebra. ThenlR 4,(z/,~) has a canonical Frobenius action commuting with the
Frobenius omRI'((B/A)crys, Ocrys) underCompp /4.
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Proof. Let P, — A be a free(Z/p™)-algebra resolution ofl. ThenQ;gm/(Z/pn) has a natural Frobenius action
coming from the isomorphism (ﬂ;jm/(z/pn) with the crystalline cohomology d./p™ — P,,,/p (compatible with
divided powers o). Since the Frobenius action on crystalline cohomologyieforial, Frobenius also acts on the
bicomplexQ23, /), and hence ofiR 4 /(z,/,,»). The compatibility withComp  , is clear from construction. [J

Remark 3.48. It seems possible to use Mazur’s theorem (or, rather, Ogpesigralization of it) to explicitly charac-
terise the “image” of the Frobenius map defined above: itéshtbmotopy colimit overn € A°PP of the complexes
LnQ;Dm/(Z/pn), wherel.n denotes the cogauge used in Ogus’s theorem. However, thssrii seem very useful as
derived de Rham cohomology tends to be unbounded outsidartbeth case.

4. SOME SIMPLICIAL ALGEBRA

The purpose of this section is to record some basic notioséiplicial algebra. Ir§4.1, we review the usual
model structures on simplicial sets, abelian groups, antheatative rings that are used in practice to defined derived
functors. In§4.2, we extend these ideas to simplicial commutative manditiis material will be used ib to set up
some basic formalism for derived logarithmic geometry.

4.1. Review of some standard model structuresWe simply collect (with references) some of Quillen’s réstdom
[Qui67]. All model structures we consider arlsed so we will not use this adjective. We refer the reader to tite e
of §1.5 for our conventions concerning simplicial sets, sikiplirings, etc.

Simplicial sets and abelian group3he categorysSet is always equipped with the model structure where weak
equivalences are the usual ones (defined by passage to gieoraealisations), and fibrations are Kan fibrations.
Similarly, we equipsAb with the model structure where weak equivalences (respatitns) are the maps which

induce weak equivalences (resp. fibrations) of underlyingpkcial sets. In particuIaﬂ,?om;etjs‘*ebt is a right Quillen
functor with left adjoint given b;FreeiSA‘if. A good reference for these model structures is [Qui67]. Bew here

the convention that| — |, Sing(—)) denotes the usual adjunction betwe&at and topological spaces.

Simplicial commutative ringsThe categonAlg has finite limits, all filtered colimits, and enough projees (given
by retracts of free algebra%reeSAﬁ;(X) ~ Z[X], since effective epimorphisms are just surjective mapgndd, by
Quillen’s theorem [Qui67, Chapter 24, Theorem 4], we can equip the categenig with a model structure where
fibrations (resp. weak equivalences) are those mgps+> B, such that for every projective € Alg, the induced
mapHomas (P, Ae) — Homais (P, B,) is a fibration (resp. weak equivalence). Note that a projectiis a retract

of a free algebréfreei'“];.(X) for some sefX, and that for a seX’, we have

HomAlg(FreeSAﬁtg(X), A) ~ Homge (X, A) ~ A~

Thus, a fibration (resp. weak equivalenek) — B, in sAlg is precisely a map such that for any séf the map

AY — BYX of simplicial sets is a fibration (resp. weak equivalenca)particular,FreeﬁsAﬁg is a left Quillen functor

with right adjointForgetzsAeltg , and similarly for the pai(Freegﬁ?g, ForgetzsAelf). In fact, we have:

Proposition 4.1. A mapA. — B, in sAlg is a fibration (resp. weak equivalence) if and only if it is sbaamap of
simplicial sets.

Proof. For fibrations, this follows because an arbitrary producfilafations (in any model category) is always a
fibration. For weak equivalences, note that the simplicglisderlying any object ofAlg is automatically Kan
fibrant as it is a simplicial abelian group (see [Qui67, Ckagt§3, Corollary to Proposition 1, page 3.8]), and hence
fibrant-cofibrant since all simplicial sets are cofibrane(Bgui67, Chapter 23, page 3.15, Proposition 2]). Thus, a
map A, — B, in sAlg that induces a weak equivalence on underlying simplicied aetually induces a homotopy
equivalence on underlying simplicial sets. The claim nollofes from the fact that homotopy equivalences are closed
under arbitrary products, and the fact tlﬁ‘at"getge]tg commutes with products. O
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4.2. Model structures on simplicial commutative monoids. Quillen’s theorem used if4.1 also leads to a model
structure orsMon, and we summarise the result as:

Proposition 4.2. The categoryMon admits a model structure with a mgp: M, — N, being a (trivial) fibration if
and only if it is so as a map igSet.

Proof. The categoryMon has finite limits, all filtered colimits, and enough projees (given by retracts of free
monoidsF]reef\’/}iﬁn (X) ~ N&X) .= 3,xN - z, since effective epimorphisms are just surjective mapg)QBillen’s
theorem [Qui67, Chapter 24, Theorem 4], there is a model structureon with a mapf : M, — N, being a
(trivial) fibration if and only if the associated mafpm(NX), M,) — Hom(N) | N,) of simplicial sets is a trivial
fibration for any sefX (as any projective is a retract of one of the foNiX)). By adjunction, this last map may be
identified with the magM,)* — (N.)*. Hence, it suffices to show that a magp, — N, in sSet is a (trivial)
fibration if and only if(M,)X — (N.)X is so for any sef(. This follows from axiom SMf [Qui67, Chapter 2§2,

Definition 2] (applied withA = §)) and [Qui67, Chapter 233, Theorem 3]. O

There is a forgetful functdforgetay,, : Ab — Mon which is a right adjoint with left adjoint given by/ — M2,
the group completion functor, denotéd)s'™ in the sequel. These functors interact well with the modeicstires:

Proposition 4.3(Olsson) The adjoint pair((— )&, Forget®sy,) is a Quillen adjunction. Moreover, iP, — M is

an equivalence isMon with M with discrete, theds'™ — M8 is also an equivalence.

Proof. The first part is clear as (trivial) fibrations #&Mon andsAb are defined by passing to underlying simplicial
sets; the second part is [Ols05, Theorem A.5]. O

Regarding a commutative ring as a commutative monoid undéiptication defines a forgetful funct@rorgetﬁfn :

Alg — Mon with left adjointFree%‘é“, and similar simplicial functors. As in the case of abeliaoups, one has:

sAlg
sMon

Proposition 4.4. The adjoint pair(Free )", Forget
weak equivalences.

) is a Quillen adjunction. MoreoveF,reezkll‘;“ preserves all

Proof. The first part is clear as (trivial) fibrations in botfvion and sAlg are defined by passing &set. For the
second part, note thatiff, € sMon, then

Forget®3 12 o FreeZ)2" (M,) ~ FreeS3}y o Forgetige," (Ms) ~ ZM,,

i.e., the abelian group underlying the free algebra on a ndofb is the same as the free abelian group on the set
underlyingM. Now if f : M, — N, is a weak equivalence isMon, then the magyf is also a weak equivalence
when regarded as a map of simplicial sets. Ken Brown'’s lemmiéch ensures that a left Quillen functor preserves
all weak equivalences between cofibrant objects) and thbreofty of all simplicial sets then show that the induced
mapFreejieg(f) =7Zf :ZM, — ZN, is a weak equivalence of simplicial abelian groups (and éemderlying
simplicial sets). The claim now follows from the descriptiof weak equivalences igAlg. O

The next few lemmas prove easy properties about simpliciadroutative monoids. First, we relate a simplicial
monoid to its singular complex.

Lemma 4.5. For any objectM, € sMon, the singular comple$ing(|M,|) acquires the structure of a simplicial
commutative monoid. The natural maf, — Sing(|M,|) is a weak equivalence of simplicial commutative monoids.

Proof. The geometric realisation functor | commutes with finite products of simplicial sets, so the iplittation
map M, x M, — M, defines the structure of commutative monoid|d#,|. The singular complex functor, by
virtue of being a right adjoint, also commutes with finite gots, sSing(| M, |) becomes a simplicial commutative
monoid. Itis clear that the maj/, — Sing(|M,]|) is @ map of simplicial commutative monoids. Moreover, theoma
|Mo| — |Sing(|M,|)| is a weak equivalence (which is true for any simplicial s&)the last claim follows. O

Next, we relate a simplicial monoid to its set of connecteghponents.

Lemma 4.6. Let M, € sMon. Thenmy(M,) (computed on the underlying simplicial set) has the natstalcture
of a commutative monoid. The maf, — o (M,) is the universal map fromV/, to a simplically constant object of
sMon. Moreover,)M, is discrete if and only i/, — 7o(M,) is a weak equivalence.

21



Proof. The multiplication mapM, x M, — M, defines the multiplication om,(M,) asmo(—) commutes with
products of simplicial sets. The universal property coniesctly from that ofrg of any simplicial set. The last claim
is true for any simplicial set. O

Recall that an object inMon or sAlg is calleddiscreteif the underlying simplicial set has a discrete geometric

realization. We show next thﬁteei%‘éﬂ preserves and reflects discreteness:

Proposition 4.7. An objectM, € sMon is discrete if and only iFreei%fé“(M.) is discrete.

Proof. The forward direction follows from Proposition 4.4 appligdthe mapM, — mo(M,) using Lemma 4.6.
For the converse, note that/,| is a topological space with an abelian fundamental groupcési/, is commu-
tative monoid, the spac@/,| is a commutativel{-space) for any base point, and that the singular chain campl
ZSing(|M,|) of |M,] is equivalent to th&M, ~ Forget’} * o Free:x 2" (M,) by Lemma 4.5. If the latter is discrete,
then each connected componentf, | has no homology. Since the fundamental group is abeliamh, eamponent
is therefore contractible (by Hurewicz). The claim now éolk. O

In preparation for discussing flat morphisms of log schemvesnake the following definition:

Definition 4.8. Amaph : M — N of monoids idlatif for all mapsM — M’, the natural ma[M’I_I’]QN — MUy N
is an equivalence or, equivalently M’ 1%, N is discrete. Herd/’ L%, N is thehomotopy-pushowf M — N along
M — M’, defined by taking a cofibrant replacementidr— M’ and applying the naive pushout.

The definition given above is a general definition in modeégaty, and specialises to the case of flatness in the
case ofsAlg, which explains the nomenclature. Our main observation is:

Proposition 4.9. Amaph : M — N in Mon is flat if Free} 2" (M) — FreeX2" (N) is flat in Alg.

sMon

Proof. By Proposition 4.4, the left derived functbitree;,j," coincides (up to equivalence) with the naive functor

Freezlxlfé“. Hence, since the former preserves homotopy-colimits,aveverite

M h U M L M U
Freejaje (N Uy M') =~ Freepjo" (V) ®Free%?(M) Freeay, (M').

By assumption, the right hand side is discrete, and hence #wileft hand side. Proposition 4.7 then shows that
N Uk, M'is discrete, as desired. O

Example 4.10. An integral homomorphism of integral monoids is flat by [K&t®roposition 4.1], and can therefore
be used to compute homotopy pushouts.

5. THE CATEGORY LogAlgP™ OF PRELOG RINGS AND ITS MODEL STRUCTURE

Our goal in this section is to define the basic object of Iabaric algebraic geometry: a prelog ring. We define this
next, and introduce a model structure on simplicial preings immediately after; this model structure will replace
the usual model structure arhlg in logarithmic version of the cotangent complex and thewdetde Rham complex.

Definition 5.1. Let LogAlg®™® be the category of maps: M — A with M a monoid,A an algebra, and a monoid
homomorphism wherd is regarded as a monoid via multiplication; objects of tlategory are often calleprelog
rings. For an object? € LogAlgP*®, we often writePy), and Pyo, for the rings and monoids appearingfh Given
aring A, we often used to denote the prelog ring : 0 — A.

Remark 5.2. As the notation suggests, a prelog ring is a weaker versitimeafiotion of a log ring. More precisely, a
prelog ringa : M — Ais called dog ring if a=(A*) — A* is an isomorphism, at least after sheafification for some
topology (typically étale) ospec(A). It turns out that it is much easier to develop the basic hebthe cotangent
complex (see [Ols058]) with prelog rings, so we focus on these, and only discesaigne log rings occasionally.

The associatio® — (Puion, Paig) defines forgetful functors

Forgetggtgf Sli?e : LogAlgP™ — Set x Set and Forgetkffﬁipl: : LogAlgP™ — Mon x Alg.

Both functorsForgets 84 ™ andForgetk,fffxlflz admit left adjoints defined by

Freeiitgislgfm (X,Y) := (NX) Freejsfl;(X UY) ~ Free%fén(N(X)) ®z Freejsfl;.(Y))
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and

Free} o 08 (N, B) := (N — Free)\2"(N) ®z B).
HereNX) denotes the free monoid on a Séti.e., adirect sumof copies ofN indexed byX . Using these functors,
one can construct a model structuresdrgAlgP"®:

Proposition 5.3. The categoryLogAlgh™® admits a simplicial model structure with (trivial) fibratis being those

mapsP — @ which induce a (trivial) fibration after application dorget®5°528” °. Under this model structure, both

sLogAlgP™® sLogAlgP*® : : . f sSetx sSet sMon x sAlg
Forget ety sSet andForget ;. a1 @re right Quillen functors with left adjointBreey o'\ ovre andFree p oy ore
respectively.

Proof. The categoryL.ogAlgP*® has all small limits and colimits; the formation of limits roonutes with both for-
getful functors mentioned above, while the formation ofimdts commutes Withorgetkfffxliig. Since effective
epimorphisms if.ogAlg®™ are exactly the maps which induce surjections on underly@tg, one can check (using

adjunction) that the objec&eeiitgﬁsl’gim (X,Y) are projective, and that

Freeif)tgfl’gf,m (1,1) =~ Freeiitgfl’gfm (1,0) U (0,1)) ~ Freeizfgﬁslgﬁm (1,0)u Freeiffgf]’gfm (0,1)

generates the categohpgAlg?™, i.e., every object admits an effective epimorphism fronoproduct of copies of
Freep ik (1, 1). Quillen's theorem [Qui67, Chapter 24, Theorem 4] then shows theltogAlg™™ has a simplicial

model structure with (trivial) fibrations being defined bypapng Forget’5°2*!2""; note thatP, — Q, is a (trivial)

fibration if and only if Py A1z — Qe ale ANAPs von — Qe Mon are (trivial) fibrations insAlg andsMon respectively,
so we have checked all claims. O

Remark 5.4. The cofibrations isLogAlgP*® can be described explicitly as follows (see [Qui67, Chapté#, page

4.11, Remark 4]): a free cofibration is a m@@ — A) — P, with eachP,, ~ Freeiitgflgfm (X,Y) for suitable
(M—A)/

setsX andY with the additional property that all degeneracies are éedifromSet x Set, and a general cofibration
is a retract of a free one.

Proposition 5.3 implies that the formation of homotopyitsrcommutes with the right derived functors of the

forgetful functorForgetzkffﬁizleg; it turns out that the same is true for homotopy-colimits:

sLogAlgP™

Proposition 5.5. The functortorget;yy 551,

is a left Quillen functor.

Proof. We first observe thaforgety%o% . is a left adjoint functor with right adjoinily.>’yi2)¢ given by(N, B) —

(N x B — B). The resulting simplicial functaxilsMen sAle preserves (trivial) fibrations since (trivial) fibrationga

sLogAlgPre
defined insMon andsAlg by passing taSet, and similarly forsLogAlgP*®. Hence,Nilzi/[O‘g}flgﬁig is a right Quillen

sLogAlgP*® 0

functor with left Quillen adjoint given b¥orget ;; 5 s Sa,-

Next, we define the prelog avatar of the canonical free réisolu

Definition 5.6. For a map(M — A) — (N — B) in LogAlg™*, and letPy,_, 4y (N — B) be the simplicial

08 Alg(hr Ay,

L
re Set x Set
¢ ’ ForgetSet X Set

(M—A)/ LogAlgf’Ir\;ﬁA)/

(N — B); the counit defines an augmentatiBn,_. 4)(N — B) — (N — B), and we call this theanonical free
resolutionof the (M — A)-algebra(N — B). In general, any trivial fibratio®, — (N — B) with P, cofibrant in
sLogAlgE’;‘;’%A)/ will be called aprojective resolutiorof (N — B) as an(M — A)-algebra; the same conventions
apply for a morphism in an arbitrary model category.

object insLogAlg built using the adjunctiofiFree ) applied to the object

One can check that the canonical free resolution is indeedjeqtive resolution, and any two projective resolutions
are homotopy equivalent (see [Qui67, Chaptefll, Lemma 7]). Moreover, there is a tight connection between
projective resolutions of prelog rings and those of the uiydey monoids and algebras:

Proposition 5.7. Given a mapM — A) — (N — B) in LogAlg™™ together with a projective resolutioR, —
(N — B), the mapsP, vion — N and P, a1 — B are projective resolutions isMon andsAlg respectively.

Proof. This follows from the fact thaForgetikffﬁing preserves trivial fibrations (since it is a right Quillen @wor

by Proposition 5.3) and cofibrantions (since it is a left @uilfunctor by Proposition 5.5). O
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6. LOGARITHMIC DERIVED DE RHAM COHOMOLOGY

Our goal in this section is to use the formalisntb6fto define the logarithmic version of lllusie’s derived dealRh
cohomology. First, we recall the key non-derived players:

Definition 6.1. Let f : (M — A) — (N — B) be a map inLogAlg”°. The B-module oflogarithmic Kahler
differentialsis defined as

Q} = Q%N—>B)/(]\/I—>A) = (QlB/A ® (COk(M — N)¥P @z B))/((dﬁ(n), 0) —(0,n® 5(")))

wheres : N — B is the structure map; see [Kat891.7]. The monoid mapllog : N — Q} is defined by
n — dlog(n) := (0,n ® 1). The derivationB — Q}B/A defines by composition aA-linear derivation — %, and
we use} to denote the corresponding complex, calledldgarithmic de Rham complex

Note that(2} comes equipped with a multiplication, and a descending idditigation. Essentially by construction,
there is a natural multiplicative filtered m&UB/A — Q%. Moreover, an easy computation shows ttiaig(n) is
closed, and henaeélog lifts to a mapN — Q%[1], also denoted log.

Example 6.2. Let (M — A) — T(X,Y) := Freefifgfjgg,;\;%)/ (X,Y) be afreel M — A)-algebra. Then we have

QlT(X_ry)/(M%A) ~ FreeSAe]tgA/ (X UY) ®z (BrexZdlog(z) ®yey Zdy)
whered log(z) anddy are formal symbols; see also [Ols@8,4].

The logarithmic cotangent complex is defined by mimicking ¢bnstruction of the usual cotangent complex using
the canonical free resolutionsrngAlgP'® instead ofAlg. More precisely,

Definition 6.3 (Gabber) Let f : (M — A) — (N — B) be a map of prelog rings, and 1& — (N — B) be
the canonical free resolution gfin sLogAlg”™. For eachn € A, the prelog(M — A)-algebraP, has a module
Q}DR/(M_M) of Kahler differentials as defined 6.1, and as: varies, these fit together to define a simplidig/ag-

moduIeQ},./(kHA). The log cotangent complex gfis defined to be the correspondiBgmodule, i.e., we have

Ly = Qp, j(r1—a) OPa sy B-

The mapsilog : P, mon — Q}DR/(M_M) for eachP, fit together to give a maglog : Ps Mon — Ly, and hence a
mapdlog : N ~ | P, mon| — Ly in the homotopy category aiMon.

Definition 6.3 generalises in the obvious manner to all map.ogAlg™, and the compleX ; can be calculated
using any projective resolution as these are all homotopjvatgnt.

Remark 6.4. Gabber’s cotangent complex complex from Definition 6.3 is denoteﬂ,]? in [OIs05, §8]. The same
paper [Ols05] also introduces a different version of thengent complex for a morphism of fine log schemes using
Olsson’s stack-theoretic reformulation of the logaritbrtieory [OIs03]. The resulting two complexes agree for
integral morphisms ([Ols05, Corollary 8.29]) and alwaysimall cohomological degrees ([Ols05, Theorem 8.27]);
a key difference is that Gabber’'s complex is not necessdiflgrete for log smooth maps, while Olsson’s is. We
will consistently use Gabber’'s complex for two reasons:Gapber’s theory has better functoriality properties (like
the transitivity triangle [OIs05, Theorem 8.14]), (b) Gabb theory applies to arbitrary morphisms, while Olsson’s
theory imposes strong finiteness conditions that will bevaitable to us.

We have the following compatibility betwedry,,, andL;.

Proposition 6.5. Let f : (M — A) — (N — B) be a map of prelog rings. There is a natural map,,, — L that
is an isomorphism wheh/ = N.

Proof. Let P, — (N — B) be a projectivd A/ — A)-algebra resolution. The funct@brgetzﬁ’fﬁi:l&g preserves

projective resolutions by Proposition 5.5, so the naturgbiinom usual Kahler differentials to the logarithmic versi
defines the desired mdpy,,, — Ly. WhenM = N, a projectiveA-algebra resolutio®, — B defines a projective
(M — A)-algebra resolutioiM — Q.) — (M — B) by Remark 5.4. One then checks directly tﬁ%./A o~

Q}MHQ.)/(MHA), proving the second claim (or one may use [OIs05, Lemma 8.17] O
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The usual cotangent complex can be characterised by itsdiuocpoints: for a magf : A — B of commutative
rings,Hom(L ¢, M) classifiesd-linear derivationd3 — M for any complex\/ of B-modules. The next remark gives
a similar description in the logarithmic context, and wascdivered in conversation with Lurie.

Remark 6.6(Lurie). Fixamapf : (M — A) — (N — B) in sLogAlg"™. Then the construction df ; given above
can be characterised by an intrinsic description of its fomnaf points, analogous to the picture for the usual cotahge
complex, as follows. For any simplicial-moduleP, there is a natural equivalence

Maproa, (Lf, P) = Sect(rsay(N @& P — B® P,N — B) =: Der(pa)((N — B), P). (6)

Let us explain briefly what this means. The term on the lefthis $pace of maps; — P in the simplicial
model categoryModp given the usual (projective) model structure; the resglpace is homotopy equivalent to
T<oRHomp (L, P). The middle term is the space of sections of the projectiop ma

(N P—-B@®P)— (N—B)

pre

in the simplicial model categoryLogAlg(M%A)/. Here B @ P is the trivial square-zero extension &f by P,

N @ P is the trivial square-zero extension dfby P in Mon with the binary operation given by, p1) - (na, p2) =
(n1n2,p1 + p2), and the structure morphisim & P — B @ P is defined by

(n,p) = ((n),0) - (1,p) = (a(n),a(n) - p)
wherea : N — B is the structure map. A section of the projection map is eiplicomputed by first replacing
(N — B) by a cofibran{M — A)-algebra, and then producing a section over the pullbaekBtmodule structure
onSect(y—a) (N ® P - B® P,N — P)isinduced by that of”. The universalM — A)-linear section of
(N® L; - B® Ly) — (N — B) inducing equivalence (6) is determined by the standard/aéond : B — L;
and the magllog : N — Ly; both these maps implicitly use a cofibrant replacement. Wiie= IV, the equivalence
(6) recovers the fact (see [llI71, Proposition I1.1.2.61Aht the cotangent complex of a ring map classifies deauati
in the derived category. Another illustrative case is wites discrete. Here we find that the spadep, .4, (L, P)
is also discrete, angy(Map,.q,, (L, P)) can be described as the set of pdixsd) wherel : N — P is a monoid
map that kills the image i/ — N, andd : B — P is anA-linear derivation such that(n) - A(n) = d(«a(n)). Note
that A factors throughV. — N/M — 7o((N/M)&"P @7z B) sinceP is an abelian group, admits/-action, and is
discrete. Hence, this description identifieg L ;) with the sheaﬂ} from [Kat89,§1.7] or Definition 6.3.

Remark 6.7. Let f : (M — A) — (N — B) be a map inLogAlg"™. A natural question is to ask for a conceptual
description of the cokernél of Ly,,, — L. Using Remark 6.6, one can interpddhp,,;,q, (2, P) as the space
of (monoid) maps\ : N — P together with nullhomotopies of the induced mags— P and N ANx N

act

B x P = P.We do not know if there is a better description.

Definition 6.8. Let f : (M — A) — (N — B) be a map irLogAlg"*, and letP, — (N — B) be the canonical
free resolution of N — B) as an(M — A)-algebra. Thdogarithmic derived de Rham cohomologyfofdenoted
eitherdR; or dR(n_, )/(m—4), iS the total complex associated to bicomp!é};./(M_)A). The mapsP, yvon —
Q;Dn/(M_)A)[l] fit together to define a maglog : N =~ | P, mon| — dRf[1] in the homotopy category aiMon.

Elaborating on Definition 6.8, the complel ; is naturally the simple complex associated to a simplicial
cochain complexs — Q3%, /5, 4y for n € A°PP. This definition makes it clear thati; is naturally anfu-A-
algebra equipped with a decreasing and separated Hodgéidifti'i13,. Moreover, it can be computed using any
projective resolution as in the non-logarithmic case. &rae also comparison mafd$, 4 — Q3 /(4 for

eachn € A°PP which fit together to define a natural magy,,, — dR;. Finally, we have a conjugate filtration:

Proposition 6.9. Let f : (M — A) — (N — B) be a map of prelog rings (or a map kLogAlg"™). Then there
exists a functorial increasing bounded below separatechestive filtrationFil;”™ on dR;. This filtration can be
defined using the conjugate filtration on the bicompk?;g/(M%A) for any projective(M — A)-algebra resolution
P, — (N — B), and is independent of the choiceRy. In particular, there is a convergent spectral sequencéeda
theconjugate spectral sequenoéthe form

EPY: Hp+q(grzonj(de)) = Hpiq(dRy)

that is functorial inf (here we follow the homological convention thiatis a mapE?:¢ — EP—ma+r=1),
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Proof. This is proven like Proposition 2.3. O

Remark 6.10. Let LogAlg?Jr\;’_fo/ be the full subcategory dtogAlgE’f;_,A)/ spanned by free prelog algebras, i.e.,

Set X Set
LOgAlg](r)Ir\;ﬁA)/
colimits (as amo-category). Moreover, the functoN — B) — dR(n_B)/(m—4) ON sLogAlgE’E_,A)/ is the left
re,Free

E)M%A)/'

prelog algebras of the forrree (X,Y). ThenLogAlgP™™° generatesLogAlgP™ under homotopy-

Kan extension of the functqiV — B) — QN B)/(ar—a) ONLogAlg

The first basic result about logarithmic derived de Rham oudlogy is that it agrees with the non-logarithmic
analogue for strict maps:

Proposition 6.11. Letf : (M — A) — (N — B) be a map of prelog rings. Then the natural mépy,,, — dRy is
an isomorphism when/ = N.

Proof. One can use the proof of Proposition 6.5. O

Next, we show some formal properties for tensor product teba

Proposition 6.12. Let f; : (M — A) — (N; — B;) fori = 1,2 be two(M — A)-algebras, and leff : (M —
A) = (N = B) ~ (N7 — By) u?kHA) (N1 — Bs) be their homotopy cofibre product. Then the natural map
defines an equivalence

dR;, ®% dRy, ~ dRj.
If we usey; : (N2 — Bs) — (N — B) to denote induced map, then the natural map defines an eguisal
dRy, ®% By =~ dRy, .

Proof. Using the fact that a cofibre product of cofibrant replacemehéachf; defines a cofibrant replacement fr
we reduce to the case that egflis free. In this case, both claims follow from computing eiféintial forms. O

In Corollary 2.5, we saw that derived de Rham cohomology tpederate in characteristic The logarithmic
theory is only slightly less degenerate: it sees the moritmisses the algebras completely.

Proposition 6.13. Let f : (M — A) — (N — B) be amap irLogAlgpQr/e. Then

gr®(dRy) ~ AY(Cone(MEP — N&P) @4 A)[—i],
where all operations (taking exterior powers, tensor prodyand group completion) are understood to be derived.

We remark that the derived group completion agrees with #iergroup completion by Proposition 4.3.

Proof. Let f : (M — A) — T(X,Y) be a free map as in Example 6.2. Then one can show that
BH (Q3)[—i] = ANNHY(Q}) = @ A (ZD) @z A)[—i] = N ((T(X, Y )mon/M)E™P @7 A)[—i],

where the generators il (dR ;) ~ Z(X) correspond tallog(z) € Q} for x € X. This computation can be carried
out by reduction to the case th&tU Y is finite by passage to filtered colimits, then by reductionite- Q and then

A = C by base change, and then by using the logarithmic Poincamaé&eto reduce to the computation of the Betti
cohomology of a torus with character lattiZzéX) (up to someA” factors); we leave the details to the reader. Now in

general, forany mag : (M — A) — (N — B),let(M — A) % P, LA (N — B) be a projective resolution. Then
using the preceding calculation, we find that

gr " (AR ) = | Y (P80 /M @7 A)|[-i].

By Proposition 4.3, the map?y;,,, — N®P is an equivalence. Moreover, sin¢e )8 is a left Quillen functor,
Me™® — PPN /ME™P is a projective resolution aVe™ in sAb e /; the claim now follows. O

Let us give an example of Proposition 6.13.
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Example 6.14.Let f : (N* — Q[N*]) — (1 — Q) be the map on prelog rings associated to the monoid map
N* — 1; geometrically, this is the inclusion ¢f,1,...,1) in A’é with the log structure defined by the co-ordinate

hyperplanes. Lefl = Q[N*] = I'(Ag, 0). Then Proposition 6.13 shows that
gri ™ (dRg) o Aly (AF[1])[=d] = T (A") =~ Symi; (4%).
In particular,dR ¢ is an ordinary commutative ring with an increasing separatainded below exhaustive filtration

whose associated graded coincides with the associateddjed8ym’, (4*) for the degree filtration; | do not know
whetherdR; itself can be identified witym®* (A*).

We end this section with an example showing that log derieeBlam cohomology may change under passage to
the associated log structure in characterigtithis pathology will not occur in characterisgicas we will see later.

Example 6.15(Non-invariance of derived log de Rham cohomology undesipasto log structure) Consider the
mapf : (0 — Q) — (0 — Q[z, 2~ 1]) of prelogQ-algebras. Lef, : (Q* — Q) — (Q* x 2% — Q[x,z~]) be the
associated map of log structures. Then there is a natural map

de — dea.

We will show this map is not an isomorphism. To see this, neaedR ; is strict, and hencéR ; ~ Q as explained in
Proposition 6.11. On the other hand, calculatii®y, using the conjugate filtration gives

ert®™™(dRy, ) ~ Q and gri®(dRy,) ~ cok(Q* — Q* x 2%) @z Q[—1] ~ Q[-1],
while the higher ones vanish. The mdf; — dR;, maps the left hand side isomorphically ot§® (dR, ), and

conj

completely missegr{”" (dR, ), showing thatlR; — dRy, is not an isomorphism.

7. LOGARITHMIC DERIVED DE RHAM COHOMOLOGY MODULO p™

This section is the logarithmic analog§#, and depends on the theory developegfir5, ands6. More precisely,
we will show in§7.1 that derived Cartier theory works equally well in theddthmic context; this leads i§i7.2 to a
strong connection between log derived de Rham cohomologjyogcrystalline cohomology. As a corollary, some of
the characteristié pathologies of log derived de Rham cohomology (such as Ela@p5) disappear in modujd'.

7.1. Cartier theory. The key player in (logarithmic) Cartier theory is the Frolusrtwist:

Notation 7.1 (Frobenius twists) Let (M — A) € LogAlg%r:/. Then we define the Frobenius mBmb s/, 4) :
(M — A) — (M — A) as the map which is multiplication yon M, and the usual Frobenius oh If f : (M —
A) = (N — B)isamap inLogAlg%r:/, then the Frobenius twigtv — B)() is defined as the homotopy pushout
of f alongFrob(as—, 4y : (M — A) — (M — A). There are natural mag8") : (M — A) — (N — B)® and

Frobs : (N — B)Y) — (N — B) defined as in Notation 3.1.
The interaction between Frobenius twists on prelog ringkthase on the underlying rings is quite strong:

Lemma7.2. Letf: (M — A) — (N — B) beamap inLogAlg%r:/. Then there are base change identifications
Ly ®p BV ~ L) andFrobydRy ~ dR ). Moreover,f/gll; is homotopic td faig))). If Froby : A — A and

M 2 M are flat, then the homotopy pushofit) is equivalent to the ordinary pushout. Af = N, then () is
equivalent to the non-logarithmic pushout (equipped withlbg structure defined by/), and similarly forFroby.

Proof. Let P, — (N — B) be a projective resoltuon ¢iV — B) as an(M — A)-algebra. Therdl; ~ Q}D./(M_m)

~ i ~ Ol O . .
anddR; ~ Q while L) ~ prl)/(szA) anddR ja) =~ prl)/(nHA)’ so the first claim follows from

the base change properties for. Next, note that by Propositions 5.3 and 5.5, the fun%getzkffrﬁliz;g is both a
left and right Quillen functor. Hence?, a1, — B is a projective resolution oB as anA-algebra, and similarly for
Pf}glg — B, which immediately implies the second claim. For the thilaro, it suffices to check that the base
change(N — B)() is discrete after applyingorget:-os21s""

sMon x sAlg?
5 pre . . . . "
becausé“orgetzkj’cifxliAlg is left and right Quillen. The last claim can be shown as inp@sition 6.5. O

Pu/(M—A)»

which follows from the assumptions ol and A

Next, in preparation for the derived version, we first rettadl logarithmic Cartier isomorphism (in the free case).
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Theorem 7.3(Classical logarithmic Cartier isomorphisnfjix setsX andY, and letl’'(X,Y") = Freeii“gfl’gﬁ,m (X,Y) =
(M—A)/

(M &N - A[X UY]) be afree(M — A)-algebra. Then there is a natural equivalence of graded lalge
C_l : @i209§t(1)[_i] ~ @120HZ(Q})[—Z]
Proof. The mapf : (M — A) — T(X,Y) is a log smooth map of Cartier type, so this follows directynfi Kato’s

logarithmic Cartier isomorphism [Kat89, Theorem 4.12 (1)f briefly sketch the argument. TH& X, Y)Efl)g-linear
mapC~1:Q — Hl(Q}) is characterised by the following condition: force X, we have

Cfl(FroszﬁA)dlog(x)) = dlog(x)

1
T(X,Y)D /(M—A)

while fory € Y, we have
C™H (Frob{y;_, )dy) = y"~dy.
HereFrob /-, 4) is viewed as defining (via base change) the &y, Y) — 7'(X,Y)"). In particular, the logarith-

mic Cartier isomorphism is compatible with the usual onec@ostrucC !, setS(X,Y) := Freeiitgfjg&e (X,Y),
Z/p2/

the corresponding free object ov&yp®. Then f is obtained via base change from the map (0 — Z/p?) —
S(X,Y), and so it suffices to construct the Cartier isomorphismterreduction modulp of g. Now we note thay
comes equipped with a lift of Frobenius (given fpyon S(X, Y )uon, and sending variables ii andY” to theirp-th
powers inS(X,Y)aie). The rest follows as in Theorem 3.2. O

As in the non-logarithmic case, one immediate deduces ttieedeversion:

Proposition 7.4 (Derived logarithmic Cartier theory)Let f : (M — A) — (N — B) be a map of prelod,,-
algebras. Then the conjugate filtration dR ; is B(*)-linear, and has graded pieces computed by

Cartier; : gr®(dRy) ~ ALy [—i].
In particular, the conjugate spectral sequence takes tha fo
EP?t Hapig(A"Lpy) 2 Hapiq(Froby A" Ly) = Hpiq(dRy).
Proof. This is proven like Proposition 3.5 using Theorem 7.3 indt@farheorem 3.2. O
We now discuss applications. First, we show that pathotodjgcussed in Example 6.15 cannot occur mogulo

Corollary 7.5. Let f : (M — A) — (N — B) be a map irLogAlg%I:’/. Assume that both/ and NV are integral.

Letf, : (M, — A) — (N, — B) be the induced map of log structures. Then the natural map
de — dea
is an equivalence.

Proof. By [Ogu06, Proposition 1.2.2], the category of integral mids is closed under pushouts provided one the
involved terms is a group. In particular, the log structussaiated to a prelog ring with an integral monoid is also
integral. By comparing conjugate filtrations, we reduceh® @analogous claim for the log cotangent complex which
follows from [OIs05, Theorem 8.16]. O

Next, we prove an analogue of Corollary 3.10.

Corollary 7.6. Letf: (M — A) — (N — B) beamap irLogAlg%r:/. Assume thaf is log smooth and of Cartier
type. Then the natural mafR y — Q% is an equivalence.

The log smoothness of implies that bothl\/ and N admit finitely generated charts, while the Cartier type as-
sumption means that/ — N is an integral map of integral monoids (86 — N is flat by Example 4.10), and that
Frob ¢ wmon is an exact morphism of monoids.

Proof. By [Kat89, Corollary 4.5], the mapl — B is flat. SinceM — N is flat as well, the homotopy pushout
M coincides with the usual one. Now by [OIs05, Corollary 8,28¢ cotangent complefk, coincides with the one
coming from Olsson’s theory, and henkte is discrete withry (L ¢) projective and naturally isomorphic to Katd’%.
Twisting by Frobenius, we find that the same holdsfor.), and hence\’ L ;) ~ Qf;(l). The claim now follows by
comparing the conjugate filtrations on either side of the riap — 2% using [Kat89, Theorem 4.12 (1)] (and the
fact that(X”, M") = (X', M") in the notation ofoc. cit. sincef is of Cartier type). O
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We can also prove a connectivity estimate:

Corollary 7.7. Letf : (M — A) — (N — B) be a map insLogAlggr/epn/ for somen > 1. Assume thaf); is

generated by elements for somee Zx(. ThendR; is (—r — 1)-connected.
Proof. This is proven exactly like Corollary 3.13. O

Next, we address transitivity in log derived de Rham theory.

Proposition 7.8. Let (M — A) ER (N = B) % (P — C) be a composite of maps of prel#y-algebras. Then
dR4. admits an increasing bounded below separated exhaustiragitih with graded pieces of the form

de ®FrobZB FI'ObZ( A" Lg[in])’

where the second factor on the right hand side is the baseggham\" L ,[—n], viewed as arB-module, along the
mapFrob, : B — Frob’ B.

Proof. This is proven like Proposition 3.22 using Proposition hgtéad of Proposition 3.5. O

To move further, we need a definition:

pre

Definition 7.9. Amap f in LogAlgh'®, is calledrelatively perfecif Frob is anisomorphism. A mapin LogAlgy .,

Fy/
is calledrelatively perfect modulp if f @z F,, is relatively perfect; similarly for maps ihogAlg

pre
Zy/

Example 7.10.Let f : (M — A) — (N — B) be a map of prelod,-algebras. Assume that and N are
uniquelyp-divisible, and thatd and B are perfect. Theif is relatively perfect. Indeed, the Frobenia®b ,;_, 4) is
an isomorphism by the assumptions bhand 4, so the derived pushoyft!) coincides with the underived one, and
Froby is natually identified witifrob y_, 5; the latter is an isomorphism by the assumptidhand 5.

The basic result concerning relatively perfect maps is atogue of Corollary 3.8.

Corollary 7.11. Letf : (M — A) — (N — B) be a relatively perfect map ihogAlg%l;e/. ThenL; ~ 0, and
dRy ~ B.

Proof. This is proven like Corollary 3.8. O

In Question 3.9, we asked if the vanishing of the relativangent complex characterises relatively perfect maps
of simplicial commutative rings. In the present logaritkrodntext, this question has a negative answer:

Example 7.12(A non-relatively perfect magf with Ly = 0). Let k& be a field of characteristip, and consider
f:Y :=(N? = k[z,y]) - X := (N, — k[z,y, 2y~ !, yz~1]) where the first prelog ring is the usual one, and the
second one is the log structure defined by the submondfd generated biN? and=+(1, —1) mapping to the algebra
in the obvious way; this map is the first map in the exactifwatf (N? — k[N?]) — (N — k[N]) defined by the
sum mafN? — N, and therefore is log étale in the sense of Kato. Sinéefree over, we see thaly,;, =~ Q, , isa
freek|x, y]-module of rank with generatord log(x) andd log(y). Using [Ols05, Lemma 8.23], one can compute that
Ly, is also free of rank on generatord log(z) andd(zy ') = (zy~')(dlog(z) + dlog(y)). Sincery™' € Xaj,
is a unit, one easily sees thk, ®x,,, Yalg — Ly is an isomorphism. The transitivity triangle [Ols05, Thewr
8.14] then shows thal ; ~ 0. However, the mafrob; is not an isomorphism sindérob; a1, is Not so: the map
FI‘ObfyAlg is
(1 11 1 1 101 RN BN

Xay = klav,yr, oy ya™] = [27,y7, (2y™ )7, (y2~')7] = Xayg
ask[a:% , y%]-algbera map, i.e., it is a non-trivial normalisation mapus, f is a log étale map of prelog rings with a
vanishing cotangent complex that is not relatively perfect

Next, we present some computations that will be usefgtadic applications. First, we compute the log derived
de Rham cohomology of the monoid algebra of a uniqpedijvisible monoid:

Corollary 7.13. The mapf : (0 — Z) — (Q>0 — Z[Q>0]) is relatively perfect modulp and

Proof. The first claim implies the second by devissage and Coroflary, and can be proven using Example 7.101
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Remark 7.14. Corollary 7.13 is completely false in characterigiicdR ; ®z Q is not even discrete. In fact, using
Proposition 6.13, one can show thilt y ®z Q ~ dR(n_q[N))/(0—q) = Q @ Q[—1], with the non-trivial generator
in degreel corresponding td log(“1”) , where“1” € Q> is the evident element.

Next, we study the effect of “adding” a uniquekydivisible monoid to a prelog ring:
Corollary 7.15. The mapf : (0 — Z[Q>0]) = (Q>0 — Z[Q>0]) is relatively perfect modulp, and
dRy ®z Z/p" = Z/p"[Qx0]-
Proof. The first claim implies the second by devissage and Coroflary, and can proven using Example 7.100

Remark 7.16. Corollary 7.13 and 7.15 admit several generalisationsekample, the monoi@) >, may be replaced
by any uniquelyp-divisible monoid, and the algebr@sandZ[Q>] can be replaced by any algebras that are perfect
modulop; we leave such matters to the reader.

We end this section by recording the presence of the GaussaMannection on log derived de Rham cohomology.

Proposition 7.17. Let (M — A) EN (N — B) % (P — C) be a composite of maps &f/p"-algebras. Assume that
f is a free map. Then thB-moduledR, admits a flat connection relative tbthat is functorial ing.

Proof. Let Q¢ — (P — C) be a free resolution of. ThenQZ?n/(N_)B) is naturally a complex oB-modules
that admits a flat connection relative fo a direct way to see this is to use the isomorphisnigf , _, ;) with

RTrys(@n/(N — B), Oays) that is functorial in@,, by [Kat89, Theorem 6.4]. Taking a homotopy colimit over
n € A°PP then proves the desired statement. O

7.2. Comparison with log crystalline cohomology. Our goal in this section is to prove a reasonably general com-
parison result between log derived de Rham cohomology andrigstalline cohomology in the sense of Kato [Kat89,
65 - 6]; since the proof follows the same steps as that of Te@&&7, we only sketch steps. First, we construct the
comparison map in complete generality:

pre

Proposition 7.18. Let f be a map inLogAlgy ..,

E.-algebras

for somen > 1. Then there is a natural map of Hodge-filtered

eompf : de — RF(fcryS7 Ocrys)-

Proof. Let f : (M — A) — (N — B) be the map under consideration, andfet > (N — B) be a projective
resolution insLogAlgE’E,_}A)/. For eactn, the compositioridl — A) 23 P, bn (N — B) is afree map,, followed
by a mapb,, that is an effective epimorphism, i.e., bdth i, andb,, mon are surjective. LeP,, — D(b,,) — (N —
B) be the logarithmic pd-envelope bf in the sense of [Kat89, Definition 5.4]; this is computed bgtfexactifying
b, in the sense of [Kat89, Proposition 4.10 (1)], and then tgkive pd-envelope of the resulting strict map. Since the
formation of logarithmic pd-envelopes is functorial, weah a natural map of bicomplexes

Qb, /(=) = b, (11— 4) BP arg D(be)Alg (7)

Kato’s theorem [Kat89, Theorem 6.4] shows that
RF(fCryS7 ocrys) o Q;n ®Pn,Alg D(bn)Alg

for eachn, and so the right hand side of the map (7) is quasi-isomotpltie constant simplicial object ®T'( forys, Ocrys)-
More precisely, the natural map

Q;U ®PU,Alg D(bO)Alg - |Q;3./(M—>A) ®P-,A1g D(b')A1g|
is an equivalence with both sides computing logarithmistaljine cohomology. Totalising the map (7) then yields
the desired map

dRy = |Q;3./(M—>A)| - |Q;3./(M—>A) Py a1g D(be)alg| = RT(ferys, Ocrys)- O
Remark 7.19. Using Remark 6.10, one can give a direct construction of tap@mp  as in Remark 3.26.

Next, we single out the class of maps we will prove the conspartheorem for:
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Definition 7.20. Amap f : (M — A) — (N — B) of prelog(0 — Z/p™)-algebras is called &-Ici mapif both A
andB areZ/p"-flat, andf can be factored a§\f — A) % (P — F) LA (N — B) with a an inductive limit of maps
which are log smooth and of Cartier type modpl@ndb a strict effective epimorphism.

Example 7.21. Let W be the ring of Witt vectors of a perfect fieldof characteristipp, and letOx be the ring of
integers in a finite extension &tac(1¥), and letO x be an absolute integral closure®jf;. The primary examples of
G-lci maps we will be interested in are the modplbreductions of: the maf) — W) — (Ox — {0} — Ok), the
map(0 — W) — (Ox — {0} — Of), and the magOx — {0} — Ox) — (N — B) obtained from an affine patch
of a semistabl® x-variety.

Our main theorem here is:

Theorem 7.22.Letf : (M — A) — (N — B) be aG-Ici map in LogAlgFZ’r/epn/ for somen > 1. Then the map
Comp, from Proposition 7.18 is an isomorphism.

Sketch of proofLet (M — A) % (P — F) LA (N — B) be a factorisation witlx a log smooth map that is of
Cartier type modulg (or an inductive limit of such maps), amd strict effective epimorphism. Then by Corollary
7.6 and devissage, the m&pmp, is an isomorphism. The mapomp, is an isomorphism by Theorem 3.27 (or
simply Corollary 3.40). These two cases can be put togethir the proof of Theorem 3.27 using Corollary 7.8; we
leave the details to the reader. O

We give an example showing that the Cartier type assumptidineorem 7.22 cannot be dropped.

Example 7.23.Letk be afield of characteristjg and letf : Y := (N? — k[z,y]) — X := (N, — k[z,y, 2y, yz 1))
be the map considered in Example 7.12. Singe~ 0, the complexdR; is given by the ringX&)g using the conju-
gate filtration. The crystalline cohomolo®'( ferys, O), on the other hand, is given by the rig,;, thanks to Kato’s

theorem [Kat89, Theorem 6.4] &sis log étale. Since the ma)ﬁgl; — Xalg is not an isomorphism, we see that log
derived de Rham and log crystalline cohomologies do notssecdy agree. Note that the mgpn this example is
not an integral map, and hence not of Cartier type.

We end this section by showing that the Frobenius action greigstalline cohomology always lifts to one log
derived de Rham cohomology.

Proposition 7.24. Let f : (0 — Z/p™) — (M — A) be a map inLogAlg™°. ThendR; has a natural Frobenius
action compatible witftomp.

Proof. This is proven just like Proposition 3.47. O

8. THE DERIVED DE RHAM COMPLEX FOR p-ADIC ALGEBRAS

In this section, we recorg-adic limits of the results fron§3 and§7. The basic object of interest is completed
derived de Rham cohomoogy:

Definition 8.1. Let f : A — B be a map insAlgz , (or in sLogAlg%r:/). Then thep-adically completed derived
de Rham cohorﬂ(llogy of is defined asﬁi? := Rlim, (de ®z, Z/p"), where the limit is derived. We let
dlog : Byon — dR[1] denote the-adic limit of the maps

dlog : Bynion — dRy ®z, Z/p"[1] ~ de®ZpZ/pn [1]
from Definition 6.8.

We recall our standing convention th@talways denotes the (deriveghadic completion of a complek of abelian
groups. A useful observation in working with these compleiis:

Lemma 8.2. Let K be a complex of abelian groups. Th&n~ K, andK ®z Z/p" ~ K ©z Z/p" for all n.

Proof. It clearly suffices to show the second claim. By devissagemag assume = 1. SinceF,, is represented by
a perfect complex oZ,-modules, the functor @z, F,, commutes with arbitrary limits, S ®z, F, ~ K ®z, F)p.

Hence, it suffices to show thdt ~ L for a complexL of F,-vector spaces viewed as a complex of abelian groups.
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Using the compatible sequence of resolutiéZg N Zp) ~ Z/p", one easily computes thatwz Z/p" ~ L& L[1],
with the transition maps given by the identity on the first sumnd, and) on the second summand. SinceldfPP-
indexed limit of0 maps i, the claim follows. O

Next, we record some basic formal propertieg-afdic derived de Rham cohomology.

Lemma8.3.LetA — B, A— C,andB — D be maps irsAlgz ,. Then we have:

(1) The natural maml@ — dm is an isomorphism.
(2) The natural maps induce isomorphismi® ;  , ~ d@ ~ dﬁé\/A‘

L

(3) There is a Kunneth formulalR@/A ~ dﬁB\/A@)AdRC/A.
(4) There is a base change formu@@mc o~ dRB/@E/C.
(5) If A — Bis relatively perfect modulp, thenZ ,, ~ 0, anddR /4 ~ dRp, 5.

All the assertions in Lemma 8.3 are easily deduced from theesponding modulg™ statement; the details are
left to the reader. We also remark that each statement in laegh&admits a logarithmic analogue as well. The main
p-adic theorem we want is the comparison between derived denRheory and crystalline cohomology:

Theorem 8.4. Letf : (M — A) — (N — B) be a map of prelod,-algebras. Assume that and B are Z,-flat,
and thatf is G-Ici modulop. Then there is a natural isomorphism

ARy ~ RIm Rl erys(f ®z, Z/P", Ocrys)-

This isomorphism is compatible with the malisg : N — d/R\f[l] anddlog: N — Rlcrys(f ®z, Z/p", Ocrys)[1].

One of the advantages of derived de Rham theory over criypgtabhomology is that it automatically applies to
derived rings. In practice, this extra flexibility allowseto compute derived de Rham cohomology of some maps of
ordinaryZ,-algebras without too many flatness constraints:

Proposition 8.5. Let A be aZ,-flat algebra, and leB = A/(f1, ..., f,) with (f;) a regular sequence. Then
dRpa ~ @E-(A@) i A(m)).
We donotassume that the sequenfg. . ., f. is regular modul®, so thatf; = p for somei is permissible.

Proof. We can writeB as the derived tensor produetA/(f;). Each mapd — A/(f;) can be obtained via derived
base change from the ma&p [z] 730 Z, alongz — f;. By Theorem 8.4, we know that

-

dRZp/Zp[:c] >~ Zp<$>

The mapZ,[z] — A defined byx — f; admits a flat resolutioﬁA[ax] v A[x]) in the category o, [x]-modules,
whereA[z] is viewed as &, [x]-module viaz — . Base change and Kunneth then show that

dRp/a = BidR (a7 /a = @3 (Ale) " Alz)),
as desired. 0
As a corollary, we can relate tf#,-derived de Rham cohomology of & -algebra to geometric invariants:
Corollary 8.6. Let Ay be anF,-algebra. IfA is a p-adically completeZ,,-flat algebraA lifting Ao, then

whereT is the completion of a complex of torsion abelian groupsllis perfect, themmp ~ W(A)®T where
W (A) is the ring of Witt vectors oft, andT' is as before.
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Proof. The second assertion follows from the firsti&§ Ay) is Z,,-flat algebra lifting lifting Ay when A, is perfect

(and using thaﬂRW/(,B/zp ~ W(Ao) asZ, — W (Ay) is relatively perfect modulp). To see the first assertion,
note that the formulaly, = A ®z, F,, (coupled with Kunneth) immediately show that

dRAO/Zp = dRA/ZTJé-Z\PdRFP/ZI”
so it suffices to show the assertion s = F,,. Sincep € Z,, is a regular element, Proposition 8.5 shows that
dRr, 2, = (Z,(x) ' Z,(x)).
To compute the above complex, first observe that the decaetpddject can be written as
(Zo(e) " Zp(@)) = 2y © (Dsez20 Zo/i)
where the summand, /j on the right is defined by the imageef(z — p). Completing then gives

dRFp/Zp = Zp D (é\aj€z>ozp/j)v
as desired. O

Remark 8.7. The completed direct sum appearing at the end of the proobodlary 8.6 need not be torsion; for
example, the element of the direct product that'is! in the Z,,/p" summand for alk (and0 in the other slots) is
naturally a non-torsion element in the completed direct.sMevertheless, Corollary 8.6 does show that whgris

perfect, the rindV (A,) may be obtained as the largest separated torsion-freemmoﬁdR/A;Zp.

Remark 8.8. The idea of using the Frobenius action on the cotangent eangilanF,-algebra to produce liftings
to characteristi® is not new. It occurs in [dJ95,1.2] and, more recently, in Scholze’s work [Sch11]. The itasy
interpretation ofil’(A4,) as a formal deformation ofl is quite useful in practice. For example, fdgp perfect, the
Teichmuller lift[] : Ao — W (Ap) arises by repeatedly applying the following simple obsgovato N = A, and
M the multiplicative monoid underlying an infinitesimal tkéming of Ay: if V' is an abeliarp™-torsion group NV is
a uniguelyp-divisible commutative monoid, and: M — N is a surjection of commutative monoids with kermél
then there is a unique sectionofas the multiplication by™ map onM factors throughr).

Warning 8.9. Itis tempting to guess that the derived de Rham cohomolo@y/ pf — F,, is simplyZ/p™. However,
this is false forn > 2. If it were true, then the derived de Rham cohomolog¥'of— F, ®z,,» F, =: R would
beF), by base change. Now = Symg_(F,[1]) is a retract ofR (the mapR — S is a Postnikov trunctation, while

the sectionS — R is defined by choosing a generatormaf(R) ~ F,), sodRg,r, ~ F, as well. However, this

is a contradiction adRg/p, ~ F)(r) ®F, [, Fp (via pushout fromiRg /r,[.) ~ Fp(z) alongF,[z] w30 F,) has

infinite dimensionatr, andx . In fact, a simplicial enhancement of Proposition 3.17 shdlis/x, ~ S(z).

9. PERIOD RINGS VIA DERIVED DERHAM COHOMOLOGY

In this section, we give derived de Rham interpretationsvéaious period rings (with their finer structure) that
occur in thep-adic comparison theorems. We begin with notation thatlvélused through the rest of this paper.

Notation 9.1. Let k be a perfect field of characteristicwith ring of Witt vectorsW. Let K, = Frac(W), and fix
a finite extensiorK/ K, of degreee with ring of integersd i, and a uniformiserr with minimal (Eisenstein) monic
polynomial E(x) € Wz]|. We fix an algebraic closurg of K, which gives us access to the absolute integral closure

Ok of O, its p-adic completiorO x, and the Galois grou@'x.. For anF,-algebraR, let RP*f and R, to denote
thelim andcolim perfections ofR, respectively. We follow the convention th@, M) refers to a prelog ring where
Risaring,a : M — Ris a prelog structure; whel/ = N (resp.Qx>o) with (1) = f (resp. witha(1) = f for an
elementf with specified rational powers), then we also wiite, f) (resp.(R, f@>°)). For anO x-algebra4, we let
(A, can) denote the log ring defined by the open sulSgeic(A[1/p]) C Spec(A) (unless otherwise specified).

We start by recalling a construction of Fontaine that liethatheart of the theory of period rings.

Construction 9.2. We defined;,; = W ((Ox /p)Pe™). Given a sequencgr, € Ok} of p-power compatible roots
(i.e.,r? = r,_1), we usgr] € Aj,; to denote the Teichmuller lift of the evident element lim,, r,, of (O /p)Pe.
By functoriality, there is & x-action onA;,.
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Construction 9.2 interacts extremely well with de Rham tligtine highlights of this interaction are:

Proposition 9.3. With notation as above, one has:
(1) The ring(Of /p)Pef is a perfect rank complete valuation ring.
(2) The cotangent compléx,, . ,w vanishes.

(3) There exists a uniqu&x-equivariant ring homomorphisth: A, = W((Og /p)Pet) — a—gthat modulap
reduces to the defining maP x /p)P°™* — Ok /p ~ Ok /p. This map is surjective and satisfigk[r]) = ro

for anyp-power compatible sequenée, € O }.

(4) The kerneker(0) is principal and generated by a regular element. If a cormﬂatisequencévrﬁ € O} of
p-power roots ofr has been chosen, théf([x]) is a generator foker ().

(5) The transitivity triangle foiV — A;,; — O induces an isomorphism

—

¥ ker(0) /ker(0)2 ~ [— _ [~1] ~ Q

1 _
Ox/W W/W[ 1.

Proof. These results (due to Fontaine) are well-known, but we Bkatguments to show that they are easy to prove.
(1) The perfectnessis clear. An elementary argument [Fdji92.2] shows that there is a multiplicative bijection

of sets(Ox /p)Pe™ ~ lim,,,.» Ok defined by the obvious map from the right to the left. Thisatimne
to define a rank semi-valuation or{O i /p)P°'! via the valuation on the first component of the inverse limit
on the right. One checks directly that this semi-valuatias ho kernel, so it defines a rahkaluation; the
completeness is automatic as the displayed inverse limitbatinuous transition maps and complete terms.

(2) This follows from the vanishing af 4, , /w ®@w W/p ~ Liacrpyeert jowyp) which follows from perfectness.

—

(3) This follows directly from the cotangent complex varigh Indeed, as the ringd’, A;,s, and Ok are
all p-adically complete, the surjective maf,s/p — O /p admits a unique lift to a surjective mag :
Aint /p" — Ok /p™ by the vanishing ol a,.c/pm)/(W/pn), SO0 = lim,, 0,, does the job.

(4) As the source and target 6fare 1V -flat andp-adically complete, it suffices to show thatr(6) is principal
and generated by a regular element mogul®y (1), the kernel ofd;.;/p = (O /p)P*f — Ok /p is the
set of elements with valuatior 1, which is certainly a principal non-zero ideal and can beegeted by
any element of valuation exactly The same reasoning shows that any elemeiedf) whose reduction
modulop has valuation is a generator. One h&$E([x])) = E(r) = 0, soE([x]) € ker(6). On the other
hand,E([x]) = [x]® mod p, which has valuatioa - val,(7) = 1, so the claim follows.

—

i i i ~ T~ oL
(5) This follows from (2), (4), and the |somorph|sb3§/w ~ Lggw ™ Q@/W, where the last one comes

from the ind-Ici nature ofV’ — O, see Proposition 9.13; an explicit formula is given in Rektad. O
Remark 9.4. Continuing the discussion of Proposition 9.3, one can dest¢he isomorphism from (5) explicitly.
The transitivity triangle foi/” — A, — O is an exact triangle

ker(@)/ker(9)2 — LAinf/W — Lﬁ/w

—

Multiplication by p™ is injective on the left term (as it is a free rank x-module), a quasi-isomorphism on the middle
term (by (2)), and surjective om, of the right term (since one can extract-th roots inOg). Hence, the cone of
multiplication byp™ on this exact triangle gives a coboundary isomorphism.

Un : Ker(8)/(ker(6%),p") =~ L= @z Z/p"[-1] = Qg [0,

which is simply the reduction modujg® of the mapy from (5). Unwrapping definitions, this map is given by
- 1
[ q‘1(9*(17(df)))-

Heref € ker(#) is a lift of f € ker(0)/(ker(0)?,p™); its derivativedf is viewed as a mag ER ker(0) < La,w-
The map#(df) :Z — Ly, w is the composition ofif with the inverse op™ : L, . jw — La, . /w (Whichis a
quasi-isomorphism by (2)). The mép : La, . ,w — Lo:/w is the usual map. Sincg comes fronker(6), one
K
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has a specified null homotopy pf - 0. ( —(df)), sod. ( —(df)) can be viewed as mép — L_/W ®z Z/p"[—1].

Finally, g—! is the quasi- |somorph|sm@/w ®z Z/p" [ 1]~ L oW Oz Z/p"[—1] ~ QL K/W[pn] For example,

given a compatible sequen{:pfl" € Ok} of p-power roots o, one has

-1 1 n
Uallpl = p) = (p77)" - d(p7T) € Qb P,
Essentially the same computation also shows
_ -1 _ -1 . 1 n
Un(le]) = € " d(en) = €, d(en) =: dlog(en) € Q5 1 [p"]
where{e, € Ok} is a compatible system @fpower roots ofi.

Remark 9.5. In the notation of Proposition 9.3, it is also true thiéit, /p)P°"* has an algebraically closed fraction
field; we do not prove that here as we do not need it.

Remark 9.6. Let A be an integral perfectoiﬁ-algebra in the sense of Scholze [Sch11], @Ls a p-adically

complete flatd -algebra such thatrob : A/(p%) — A/pis an isomorphism (one can also replée by any other
Ee\fectoid base ring). Most of Proposition 9.3 generaliestiessly W/hgn we replacg_; with A. In fact, the map
Ok — Ais relatively perfect modulp by definition, so the results fa x imply those forA/tQ/ deformation theory.

In particular, there exists a unique-édic formal) deformatiom;,¢(A) of A alongA;,; — Ox; moreoverA;,;(A)
is perfect modulg (as it is relatively perfect oved,,s; in fact, one hasi;,¢(A) = W ((A/p)P)), and the structure
mapf 4 : Aing(A) — A has kerneker(64) = ker(@O:) ®a., Aint(A).

inf

Next, we introduce the period rind.,,s by a derived de Rham definition.

Definition 9.7. The ring A..s of crystalline periods is defined dR/O—;W.
Remark 9.8. The ring A..,s comes equipped with a Hodge filtration and a Frobenius atipfProposition 3.47).
We show next that the preceding definitionf,,s coincides with the classical one:

Proposition 9.9. The ring A...,s can be identified with the-adic completion of the pd-envelope,, , (ker(6)). Under
this isomorphism, the Hodge filtration o,y corresponds to the filtration by divided-powerskef ().

—

Proof. By Lemma 8.3, we havd .,y =~ dL/ . Now the magV’ — O factors as a composite’ % Au¢ > Ox.

The mapa is relatively perfect modulg sinceWW/p and A;,¢/p are perfect. The mapis a quotient by the regular
element by Proposition 9.3. Hence, by Lemma 8.3 (5) and Em@&:.4 (or simply Corollary 3.40), we have

dR@/W ~ dRT:/ ~ dRTK/A.;If ~ DA,,,f (ker(@))
The assertion about the Hodge filtration is immedate. O

—

Remark 9.10. Contmumg Remark 9.6, Proposition 9.9 generallses dirgotthe case wher@ is replaced by
any integral perfectoid -algebra, i.e., Aeys(A) = dRA/Z can be identified with the-adic completion of
D 4, (a)(ker(0.4)). This observation can be used to define a comparison map [&ihg1].

The ring A..ys is also natural from the point of view ddg derived de Rham cohomology. In fact, addition of the
(uniquely divisible) canonical log structure @iy does nothing at all to de Rham cohomology:

Proposition 9.11. Let(O , can) denote the ring ;- endowed with the log structu@y — {0} — Ox. Then we have

LW/W = L(m,can)/w and ACT}’S = dR(m,can)/W'

Proof. Using the natural map, devissage, and the conjugate filiratiodulop, it suffices to prove the assertion about
cotangent complexes. Also, we may pasg-adic completions of rings using Lemma 8.3. We fix once andafioa
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collection{r# € Ox} of power-compatible positive rational powersmfthis choice allows us to define compatible
powers[g]% € Ajys forany 3 € Qxo, and hence defines a commutative diagram

W —a> Ainf —b> (Ainf; [E]QZO) 5

lc_e |

— —

O —=— (@, can)

with the square on the right being a pushout up to passagegrelog structures to log structures. Hétey, can)

denotes the prelog rinx — {0} — Ok. Since the map is relatively perfect modul@, it suffices show that
L. — Lgop is an equivalence. By the Kunneth formula for the squareyffices to show thaLb ~ (0. This follows
from Corollary 7.15 by base change along the flat (B&8R o] — Ain¢ defined byts — [x]%, wheret = “17 € Q>
is the co-ordinate oZ[Q>¢]. O

val

Remark 9.12. The proof of Proposition 9.11 “cheated” by using tllat — {0} ™% Q> has a section (given by the
choice{r? } of roots ofr). A better proof would go through the following statemenh{gh can be shown): it ¢ M
is an inclusion of integral commutative monoids wiha group and\//A a uniquelyp-divisible monoid, then

Lv—ryjasr)y =0.
for any prelogF,-algebra(M — R).

Next, we want to study some finer structures on the period4ing,. For this, we briefly recall the structure of the
cotangent complex df — O, discovered by Fontaine; our exposition follows that oflidebn [Bei,§1.3].

Proposition 9.13(Fontaine [Fon82, Theorem 1 (ii)])The maplV — Ox has a discrete cotangent complex, i.e.,

Loww = Qé—K/W. Moreover, the map,~ — Lo /w defined by, — dlog ¢ induces an exact sequence

1= (a/0x)(1) = (K/Ox) (1) = iy @2, 0k 2L =1, 8)

wherea C O is the fractional ideal comprising all elements of valuatio —-17 (soa = Ok -p 71 CK).

All tensor products appearing below take place &gunless otherwise specified. The following fact will be used
implicitly: if L/K is afinite extension, thefhy, /y ~ Q}DL/OK is a cyclic torsiond x-module.
Proof. The transitivity triangle shows that for any extensigp — L — K, the mapQ}DL/W ®o, O — Q(T/W

K

is injective, and the filtered colimit over these mapd.agries spans the target. Sintg, /y ~ QOL/W, it follows
that the same is true in the limit, proving the first assertieor the second claim, one first observes thatd log) C
Ok @ pp C O ® ppe as the set of alb x-submodules 00 x ® 11, is totally ordered under inclusion (and because
dlog(Ok @ pp) # 0). This gives a commutative diagram

W pp] @ pp Q1w

l can l can
b a. 1

where the first square is a flat base change alétig,] — Of. Sincec is injective, it follows thater(d) = ker(b) =
ker(a)®wi,,) O If ¢ € pp denotesafixed primitive-th root of 1, thenker(a) = Ann(dlog(())@up C W pp)@pip-
Now Ann(dlog(¢)) has valuationl — —= (by computing the derivative of + X + --- + X?~! evaluated at,
for example), and this implies the clalm abdwi(dlog). For surjectivity ofdlog, it suffices to show that for any
finite extensionL /K, one hasQéL/W C Ok - dlog(ppn) C Q(IDT/W for some largen. If p? Kills Qé S then
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Q}DL/W C ng ,/w generates a submodule killed p§, for anyn. The set of all submodules oty s

i
lipn 1 /W
totally ordered under inclusion, and it is clear tkg;,, .| - dlog(uyn) C Qéwp W is a submodule not killed by

n]

p?, for n sufficiently large: we simply neefi[;1,»] to have a different (relative té,) with valuation> d. It follows

thatQp, i C Orfu,n) - dlog(upn) C ng .,/w as desired. a

Remark 9.14. An alternative argument for the surjectivity diog from Proposition 9.13 runs as follows: the map
[ Wpp=] — O is relatively perfect modulp, soL; ~ 0 by Lemma 8.3 (5). By the transitivity triangle, the map

. 1 “ o 1
Fe Qo)W EWlpeo) Ok = Q-

induces an isomorphism afteradic completion. Therf, is also an isomorphism asadic completion is conservative
on p-torsionp-divisible W-modules; surjectivity ofl log now follows from the analogous claim oV [z, ].

Our next goal is to use derived de Rham formalism to constrGti -equivariant mag, (1) — Ac.ys, and show
that this coincides with a map defined by Fontaine. We firsstroit the map:

Construction 9.15. Thed log maps in logarithmic derived de Rham cohomology define maps
dlog : py~ C O — AR (577 cam) (1]
where(Ox, can) denotes the prelog ring from Proposition 9.11. Takiradic completions gives a map
dlog: Z,(1)[1] — dR(@7can)/W[1] ~ Acrys[1].
Applying 71, we obtain
B :=m(dlog) : Zp(1) = Acrys.
This map isG/ x-equivariant, and has image contained?iﬂfH(Acrys).
The mapgs defined in Construction 9.15 coincides with maps defined yt&ine:

Proposition 9.16. Let (¢,,) € Z,(1) denote a typical element.
(1) The elemerft] — 1 € Aeyys lies inFilj; (Aerys) = ker(0), hencdog([e]) € Ac.ys makes sense.
(2) The image ofe] — 1 in gri; (Acrys) ~ L /w(—1] has positive valuation.
(3) The map? : Z, (1) — A..ys coincides with Fontaine’s mafz,,) — log([¢]).

Proof sketch.We follow the notation of the proof of Proposition 9.3.

(1) Thisis clear becaus#[r]) = r, for anyp-power compatible system of elementsc O .
(2) We may assume that is a primitivep-th root of 1, so(e,,) € Z,(1) is a generator. It suffices to check that
[e] — 1 does not generate the kernel &f.;/p — Ox/p, i.e., that[—egT_]1 € Aine/p has positive valuation.

1

Twisting by Frobenius, it suffices to show that,,(e; — 1) > valp(p% ), butthis is clearval, (e1 — 1) = =,

andvalp(p%) = 1—1).

(3) Letp’ : Z,(1) — Acrys denote the mage,,) — log([e]), which makes sense by (1). It is clear that this map
is G r--equivariant, and has image containediiy; (A..ys). To show3 = 3, assume first that the induced
maps -

gty (B), griy (B) + Zp(1) = vy (Acrys) = L. jyyr[—1]
are equal, where the last isomorphism comes from Proposti®. Thens — ' defines aG k-equivariant
mapZ, (1) — Fil3; (Auys). As the only such map i (by mapping toBar and using Tate’s theorem [Tat67,
Theorem 3.3.2], see Remark 9.17), one s¢es /3'. It remains to show thatr}, (3) = gr} (3'). For this,
note that applying the-adic completion functor to the exact sequence (8) from &sitipn 9.13 gives an
exact sequence

1— Og(1) i>L?—K;V[—1] —-Q—1

where the cokerng) is a cyclicO x-module killed (exactly) by)ﬁ. By Construction 9.15, it is immediate
that the magrl, (3) is given by the composite

—
—

Z,(1) X 0x(1) > Lo ywl=1]-
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The maper}; (5') is
7 (en)]el-1 2
»(1) — " ker(0)/ker(0)* ~ L@/W[—l],
where the last isomorphism comes from Proposition 9.3. $t®wr}, (3) = gri; (3) amounts to showing
that the elementg] — 1 € ker(9)/ker(6)? andlim,, dlog(e,,) € L, /w(—1] agree under the isomorphism

ker () /ker(0)? ~ L%;V[fl]. This was shown in Remark 9.4, and is also stated in [Fo3R5,4]. O

Remark 9.17. Proposition 9.16 used properties of the riBgg, so we briefly recall the definition; see [Fon94] for
more. The ringB1; is the completion ofd;.¢[1/p] along the ideaker(6)[1/p]. It is a complete discrete valuation

ring with residue field<” and an action ofial(K /K ); the ring Bar is simply the fraction field oB31;. Powers of the
maximal ideal define a complete filtration Bfir , and the graded pieces of this filtration gré(BjR) ~ K (k) forany

k € Z. Tate's theorem [Tat67, Theorem 3.3.2] implies th&( Gal(K / K), K (k)) is trivial if k # 0, andK for k = 0.
The completeness of the filtration then implies th(Gal(K /K ), Bar) = K, andH°(Gal(K /K), Fil* Bar) = 0
for k > 0. To relate this tad.,ys, observe that the image &ér(0) C A, in BJj lies inFil' B}, and hence has
topologically nilpotent divided powers. The defining mag; — B(TR then extends to a filtered mafy..ys — B(J{R
which can be checked to be injective by checking it on gradecss as the filtration oA, is separated.

Next, we discuss some extensions. Fontaine defined a ceaainal non-zero element @ (G, Acrys); We
construct it as logarithmic Chern class:

Construction 9.18. Fix a uniformiserr € Og. Then thed log maps in logarithmic derived de Rham cohomology
define additive maps

stMon . 7N« Of — {0} 41gs dR(W,can)/W[l]-

Applying the p-adic completion functor, using Proposition 9.11, and p&sto group completions on the source
defines an additive map

St : Z o (7N)EP 5 A1,

i.e., aGk-equivariant extension & by A..,s, depending on the choice of We letcl(st,) € HY(GF, Acrys) denote
the class of the corresponding extension.

To interpret the clasdl(st,) geometrically, we need an auxilliary rirfg) .., the so-called Faltings-Breuil ring.

Lemma 9.19. Let 7 € Ok be a fixed uniformiser with minimal (Eisenstein) polynomigl:) € Wix]. Let
(Wz],z) = (O, can) denote the uniqué/-linear map of prelog rings defined by— 7. Then

AR (0 ¢ can) /(Wa).a) = Wz|(E(2)) =: Roj-
The Hodge filtration on the left coincides with the pd-filinaton the right.

Proof. The map(W{z],z) — (O, can) is strict, up to passage to associated log structure, ankidnasl generated
by a single regular elemetit(z). Hence, the claim follows immediately from Theorem 8.4. O

The promised geometric interpretationsof is:

Proposition 9.20. Let notation be as in Lemma 9.19. Then
(1) The clasgl(st,) is the obstruction to factoring the natural mdﬂ(m)/w — dR(o:K,;])/W ~ Aerys iN
a G c-equivariant manner through the projectiai (o . can)/w — dR(0  can)/ (Wial.e) = Roy -

(2) This obstruction vanishes after adjoinipgpower roots ofr, i.e., if K = UnK(wﬁ) for a chosen compat-
ible sequence gf-power roots ofr, thencl(st,) maps to0 underH' (G, Acrys) = H' (Gk.., Acrys). In
particular, there is a canonical x__-equivariant mapRo,. — Acrys.

Proof. We freely use the identification between derived de Rham aystatline cohomology (Theorem 8.4) to com-
pute derived de Rham in terms of explicit de Rham complexes.
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(1) The factorisatio®V — (W], ) — (O, can) lets us computh(L;;l)/W as the complex
d dx d dx
Ro, @wi (Wlal 4 Wial - =) = (Rox 4 Rox - = ).
The mapZ ~ (7N)&® — (O — {0})&™P e dR((;;])/W[l] can then be identified as the m@p—
dR(O/K/El)/W[l] determined byZ in the complex above. On the other hand, composing this mép wi

AR (0 ¢ can)/w — dR(O:K;])/W ~ Ay, definesst,.. The claim follows by chasing triangles.
(2) A choice of a compatible sequencepspower roots ofr determines & x__-equivariant map

17)8'P — o dl
e 21/p] = (PN) T € (@K — {01 B AR g, a1

Restricting toZ - 1 C Z[1/p] followed by p-adic completion on the target recovers the mgp However,
p-adically completindZ[1/p] produce9), so thep-adic completion ot is G __-equivariantly nullhomotopic.
It follows that the same is true fet,., proving the claim. O

Remark 9.21. The proof of the second part of Proposition 9.20 gives aniexpdentification of the classl(st)
as follows. Fix a compatible sequence= {m%" € Ok} of p-power roots ofr. Then this choice: determines a
nullhomotopyH,, of the mapst, : Z — A.ys[1] by the recipe of the proof. This nullhomotopyG__ -equivariant,
and its failure to b&- x-equivariant is tautologically codified by the mafyc — A..ys determined by
o Ho(n) — H,.

Unravelling definitions, this is simply the map
0([&]))

@]

which is the usual formula for Fontaine’s extension. In jgatar, Proposition 9.16 shows thdtst ) actually comes
from the Kummer torsok € H'(Gk,Z,(1)) (determined by:) by pushforward along : Z,, (1) — Acrys.

o — log(

Next, we discuss Kato’s semistable riﬁg\t, and its connection with the clasEst,). We give a direct definition
first; a derived de Rham interpretation is given in the prddfrmposition 9.24.

Definition 9.22. Fix a uniformiserr € Oy, and a sequencer>™ € Ox } of p-power roots ofr. The ring Ay, is

—

defined asA..ys(X), the freep-adically complete pd-polynomial ring in one variabfe This ring is endowed with a
G k-action extending the one oft.,ys given by

[r] (
o([z])
We equipAASt with the minimal pd-multiplicative Hodge filtration exteind the one onA.,,s and satisfyingX <
Fil}{(AAst). We definep : f/l; — f/l; to be the unique extension ¢fon A.,,s which satisfiesp(X + 1) = (X + 1)P.
Finally, we define a continuou4..s-linear pd-derivationV : E; — E; viaN(1+X)=1+X.

o(X +1)= X +1).

Remark 9.23. The construction oﬂs\t given in Definition 9.22 relied not just om € Ok, but also on a choice a
compatible sequence pfpower roots ofr. However, one can show that the resulting ring (with its@structure) is
independent of this last choice, up to a transitive systemmarhorphisms; see [BM0235]. In fact, Kato disocvered

—

Ag as the log crystalline cohomology of a certain map which ddpenly onr; see Remark 9.25.
Proposition 9.24. The class:](st,) maps to) underAc,ys — Aft

Proof. One may prove this assertion directly using Remark 9.21. édew we give a “pure thought” argument: the
ring As; will be realised as the derived de Rham cohomology of a mapaamommutative diagram will forag(st)
to vanish when pushed td,;. For convenience, we fix a compatible systenalbfational powers ofr. Let
C:= (Ainf[ya y_l]) [E]QZO : yz)
be the displayed prelog ring (defined using the choice abmatipowers ofr), with a G x-action defined by




extending the usual action ofy,;. The mapy — 1, coupled with the usual mag;,,; — O, defines a map

—

C — (O, can)

which is essentially strict, i.e., the associated map orrilegs is strict, and has kernéE([x]), (y — 1)), which is a
regular sequence. We define

—/
Ast = dR(ﬁ,Can)/C'

—

The compositéV — C' — (@, can) gives//l;/ the structure of anl...,s-algebra. Moreover, one computes that
— —_— —_— —_—
Ast = Aillf[y,y*1]<E([ﬁ]),y - 1> = AcryS[ya yil]<y - 1> = Acrys<y - 1>-

o~ —/
Hence, the associatioki — y — 1 identifies Ay, with Ay, in a G x-equivariant manner, and we use this isomorphism
without comment for the rest of the proof. The map- [z] - y defines & x-equivariant diagram of rings

W —— (W]z], x) ¢>C

ok

—

(Of,can) — (O, can).
Passing to de Rham cohomology gives us@a-equivariant commutative diagram

dR(OK,can)/W dR(ﬁ,can)/W

| |

dR(0x ,can)/(W[z],z) — dR

(ﬁ,can)/C.

Takingp-adic completions then gives(ax -equivariant commutative diagram

dR(OK,can)/W - Acrys

|

—

Ro, — Ay

In other words, the natural maﬁ{((;;])/w — Aays — Ay factors G i -equivariantly through the projection
dR(o/K,;)/W — Ry, . The vanishing claim now follows from Proposition 9.20. O

Remark 9.25. Let (W (z],z) % C LA (O, can) be the factorisation appearing in the proof of Propositi@#90ne
can check that this factorisation is aractificationof the composite. In particular, the log crystalline cohdogy
of b o a and that ofb coincide, and they both recover the rim/g\t; this is Kato’s conceptual definition ois\t The
argument above shows tm/l{i Aft which gives a derived de Rham definition taAgt However unlike in the
crystalline theory, since the mapis log étale but not of Cartier type moduip the madeboa — de falls to be
an isomorphism (for roughly the same reason as Example.7TR&) explains why we cannot defing, astboa,
much easier ring to contemplate thaaRb. Note, however, that the proof given above also appliesdashatcl(st )
trivialises undetd ,ys — cﬁ{; This leads to a comparison theorem over the cﬁg;a which is smaller thatﬂ;.

Remark 9.26. We continue the notation of Remark 9.25. The mﬁ),;a — //1; is simply the mapﬂ&\pboa
from Proposition 7.18. In particular, tf(éi/[z],x)-algebrasﬁ; and A, come equipped with the Gauss-Manin
connection (the former by Proposition 7.17, and the latygK#ato’s theorem) relative tdl/, and the ma@(ﬁp\boa is
equivariant for the connection. In fact, the Gauss-Maninneztion onAAst can be identified with the derivatioaN

introduced in Definition 9.22: the |somorph|smﬁ\/w o LC/W sendsdlog(z) to dlog([x]y) = dlog([x]) +
dlog(y) = dlog(y) (sincedlog([x]) is infinitely p-divisible and hencé p-adically).
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10. THE SEMISTABLE COMPARISON THEOREM

Our goal now is to use the theory developed earlier in the papprove the Fontaine-Jannsély conjecture
following the outline of [Bei]. Inspired by the complex agytt case, we construct if10.1 a topology omp-adic
schemes for which derived de Rham cohomology sheafifiégtadically; this can be viewed aspaadic Poincare
lemma, and is the key conceptual theorem. The comparisongwamstructed i1§10.2 using the Poincare lemma.

10.1. The site of pairs and the Poincare lemma.We preserve the notation frofi®, and introduce the geometric
categories of interest.

Notation 10.1. Let Varx andVar be the categories of reduced and separated finite type sshmraethe corre-
sponding fields. These categories are viewed as sites viatibgology, the coarsest topology finer than the Zariski
and proper topologies; see [B&R].

Next, we define the categofjc of pairs. Roughly speaking, an object of this site is a variéte Varx together
with a compactificatiort/ relative toO x; the compactificatiod/ will help relate the de Rham cohomology Gfto
mixed characteristic phenomena.

Definition 10.2. The siteP of pairs overK has as objects pai(#/, U) with U a reduced and separated finite type
K-scheme, and/ a proper flat reduced x-scheme containing/ as a dense open subscheme. The morphisms are
defined in the evident way. We often write map$ip asf : (U,U) — (V. V) with underlyingmapf : U — V.

The pair(Spec(K), Spec(Ox)) is the final object ofP 5. Moreover, each paift, U) € Py defines a log scheme
(U, can) wherecan : O N Of; — O is the log structure defined by the open sugbet U. ForgettingU defines a
faithful functorPx — Varg, and theh-topology onP is defined to be the pullback of thetopology fromVar g
under this functor. An essential observation [B&i,5] is thatP x is a particularly convenient basis fOary :

Proposition 10.3. The functorPx — Varg is continuous and induces an equivalence of associated.topo

Proof sketch.First, one checks directly that every mp U — V in Varg extends to amag : (U,U) — (V,V)
between suitable pairs; similarly for covers. Next, esséintoy blowing up, one shows that given paii, U) and
(V,V)andamapf : U — V, there is amh-coverr : (U',U’) — (U,U) and amay : (U’,U’) — (V,V) of pairs
such thatr o f = ¢. Using the faithfulness dPx — Var, it follows formally thatShv;, (Px ) ~ Shv,(Varg). O

From now on, we will freely identifyh-sheaves ofP i with h-sheaves ofVarg. In particular, to specify an-
sheaf onVarg, it will suffice to give anh-sheaf orlPx. Our ultimate goal is to relate de Rham cohomology to étale
cohomology. The following result ensures that thiopology on? k is good enough to compute étale cohomology:

Corollary 10.4 (Deligne) Let A be a constant torsion abelian sheaf ¥arx with value A, and let(U, U) € Pk.
Then we have a canonical equivalence

Rl ((U,U), A) =~ RT (U, A).

Proof. This follows from Proposition 10.3 and Deligne’s theorer®fs72, Proposition 4.3.2, Expose V bis] that étale
cohomology with constant torsion coefficients can be coexbirt theh-topology. O

In the definition ofVary andPx, we impose no restrictions on fields of definition of the olge&or applications,
itis convenient to work with objects are defined over a fixesebaVorking with finite extensions df is not possible
as we cannot control the field of definition alohgovers; instead, we define a variant of these categorigsiove

Definition 10.5. The sitePz of geometric pairs has as objects pdisV') whereV is a reduced and separated finite

type K-scheme, an® is a proper flat reducell x -scheme containinyy as a dense open subscheme. The morphisms
are defined in the evident way.

For any finite subextensiok’ C L C K, there is a base change func®r — P+ defined by(U,U)
(U K, (U ®o, Ok)wed). By [RG71, Theorem 3.4.6], every finite type flai -scheme is automatically finitely
presented, so each pélr, U) € P+ comes frontP,, for someL. In particular, “geometric” techniques (such as [dJ96,
§4] and [Bhae]) can be applied to such pairs by limit argumeFite logarithmic and topological remarks concerning
Pk also apply tdP. In particular,(Spec(K), Spec(O)) is the final object of this category.
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Remark 10.6. The forgetful functorP- — Var lets us define an-topology onP. The analogues of Proposition
10.3 and Corollary 10.4 obtained by replacifg (resp. Varg) with P (resp. Vary) are also true, and proven in
exactly the same way. In fact, there is a pro-étale morphiistihv,, (P7) — Shv,, (P ) of topoi with¢~! being the
pullback functor introduced above.

Remark 10.7. By [dJ96, Theorem 4.5], every pdit/, U) € Px admits amh-coverr : (V,V) — (U, U) with (V,V) a
semistablgair, i.e.,V is regular)’ — V is a simple normal crossings divisor dh and the fibres oF — Spec(O(V))

are reduced. As in Proposition 10.3, this observation caimipeoved to say: the collection of all such semistable
pairs forms a subcategofyi? C Py such thatShvy, (Px) ~ Shv,(Varg) ~ Shv,(P53) via the evident functors
(and similarly for a variant categofy = of semistable pairs ovef). Hence, at the expense of keeping track of more
conditions, we could work consistently with the more “gedmcé&category of semistable pairs (as opposed to arbitrary
pairs) in this paper without changing the arguments selous

Our main theorem is a Poincare lemma relating two naturad\@seonVar,: one computes étale cohomology,
while the other is closely related to de Rham cohomologysélsheaves are:

Construction 10.8. There are twgresheavesg,,, andac,,s on Px defined by

crys

0eys (U, U) = AR (@) canyyw
and
derys(U, U) = RT(U, AR 7 can)/w)-
The object on the right in the preceding formula is the hypkamology in the Zariski topology df of displayed
complex. Both these presheaves are presheaves of coclmpiec@s with an algebra structure, and we view them

as living in an appropriate (symmetric monoidal) statdecategory of presheaves. Léf, , andAcys denote the
h-sheafifications o#, ., andac.ys respectively. Pullback of forms induces natural mafs, — acrys andAg, o —

crys

Acrys. We denote the corresponding objectsPef by the same notation.

The cohomology of the shedf¢, . is essentially étale cohomology:

crys
Proposition 10.9. Fix an object(U, U) € P«. Then one has:

RF??((U’ U)7 ‘A((::rys ®Z Z/pn) = RF(Uéta Z/pn) <gz/p" ACTyS/pn'

Proof. Note first thatA¢,, is a constant sheaf diz sinceO(U) ~ 0™ for any (U,U) € P%. Moreover,

crys

Proposition 9.9 shows that
‘Agrys(*) Rz Z/pn =~ dR(m,can)/W ®z Z/pn = ACFYS/pn'
The claim now follows from Corollary 10.4 (and Remark 10.6). O
The Poincare lemma asserts thgt, . andA..ys arep-adically isomorphic. To prove this, we first prove a theorem
showing that the difference jsadically small, at leagt-locally; this is the key geometric ingredient in this paper
Theorem 10.10.For any pair (U, U) € Pz, there exists an-coverr : (V,V) — (U,U) such that
(1) The induced map
TZlRF(U, Oﬁ) — TZlRF(V, Oﬁ)

is divisible byp as a map in the derived category.
(2) Fori > 0, the induced map

RF(U’ Q(ﬁ,can)/(@,can) ) - RF(V’ Q(V.,can)/(@,can))

is divisible byp as a map in the derived category.
Proof. The first claim is [Bhae, Remark 2.10], while the second clfotftows from Lemma 10.12. More precisely,

both references ensure the relevaudlivisibility at the level of conomology groups. To obtairdivisibility at the level
of complexes, one simply iterates the relevant constro¢tion(U) — 1)-times (see [Bhac, Lemma 3.2]). O
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Remark 10.11. We do not know if the conclusion of Theorem 10.10 holds if walaee the basé x with a higher-
dimensional ring; this seems to be an obstacle in extendi@gtesent approach to the comparison theorems to the
relative setting. The geometric question amounts to: gaemffine schem8pec(A) and a proper mag : X —
Spec(A), can one find proper covers: Y — X such that the induced mag1RI'(X,0x) — m>1RI[(Y,Oy) is
divisible byp? We can prove such divisibility far, (and perhaps fadim(A) < 2), but not generally.

The following lemma was used in the proof of Theorem 10.10.

Lemma 10.12. Let (X, X) € Px. Then there existY,Y) € Pz and anh-coverm : (Y,Y) — (X, X) such

* ()L 1 is divisi i 1
that = Q(Y,can)/(@,can) — Q(V,can)/(ﬁ,can) is divisible byp as a map. In partlcular,Q(Xc

1 T
R”*Q(V,can)/(@,can) is divisible byp as a map.

an)/(Ox ,can)

Proof. It suffices to construct a proper surjective mapY — X of schemes such that the desigedivisibility holds
for the pullback log structure o¥. First, we claim that it suffices to solve this problem logalh X. Indeed, assume

that there exists a Zariski covgl/; C X} and proper surjective maps : V; — U; such thabr*QéU can)/(Or.can)

1 ic divici . ;
Q(Vi,can)/(@’can) is divisible byp; here all log structures are defined by pullback from thermheg structure onX.

Then, by Nagata, we can find a single proper surjectived” — X which factors throughr; overU;. Moreover, by
Remark 10.7, we may ensure that, can) defines a semistable pair, wheten denotes the log structure defined by
?71-().(_). In particuIarﬂ%_’can)/(aycan) is Z,-flat. N-O\-N _the pullback map*ﬂé?,can)/(@,can) — Qé?,can)/(@,can) _

is divisible byp over each;, and hence globally divisible by by flatness. Hence, we have now reduced to solving
the local problem. Again, we may assume that X) is a semistable pair. Now pick an affine open coMér c X}
such that eacl; is étale oveBpec(Oklt1, ..., ta]/([T;—, t: — 7)) Wherer € O, and the log structure is defined

byt,...,tx forr < k < d. Inthis case, extracting-th roots of eachi; can be seen to solve the problem. O

We now prove the promised Poincare lemma relatiig,; andA.,ys.
Theorem 10.13.The mapAg, s ®z Z/p" — Acrys @z Z/p™ is an equivalence of sheaves By for all n.

Proof. By devissage, it suffices to show the case- 1. Thus, we must show th:aﬁrys ®Z/p — terys ® Z/pis an

isomorphism afteh-sheafification. Given a paft/, U) € Pz with U normal (it suffices to restrict to such pairs since
every pair is covered by such a pair), we have

(0erys © Z/P)(U.U) = AR 5/ can) /i
and
(Acrys @ Z/p)(U,U) = RT(U,dR 57/, cam) /1)
By Proposition 3.22, in the stabte-category ofpresheavesf cochain complexes ofi;, the preshead.,,s ® Z/p
admits an increasing bounded below separated exhaustiagidih with graded piece$; (starting at = 0) given by

gz(U’ U) = dR(@/Z’acan)/k ®FTObZ@/P FI‘Ob;; (RF(U’ Qzﬁ/p,can)/(@/p,can))[72.])

Moreover, it is easily checked that the mafy,, ® Z/p — acys ® Z/p factors through the structure mgp —
derys ® Z/p. As sheafification commutes with colimits, it suffices to stibesfollowing:
(1) Theh-sheafification of the magf,., . ® Z/p — Gy is an equivalence.

crys

(2) Theh-sheafification of; is 0 fori > 0.
Both claims follow thep-divisibility results of Theorem 10.10 and base change. O

Remark 10.14. The proof of Theorem 10.13 shows that one does not really teeedrk relative to the bas#’: one
can define analogs of¢,., andA..ys by replacingiv” with any prelog ring mapping t00 -, can) without affecting

crys

the conclusion of the theorem. In particular, using> =, if one defines presheave$ andas; via
a5 (U,U) = dR o @) cam) /(W) a0 0st(U,U) = ROU, ARG cany /(W] )

then the associatddsheavesiS, and Ay will be isomorphic modul@™ via the natural magls, — Asg.
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Remark 10.15. An essential feature of most known approaches tgpthdic comparison theorems is the construction
of certain well-chosen towers of covers of mixed charastierschemes, together with a good understanding of of
cohomology (either étale, or de Rham) as one moves in tlogg$. In Faltings’ method of almost étale extensions,
the key technical result is the almost purity theorem (sedOfE page 182, Theorem]) which controls flathess prop-
erties of the normalisation of a mixed characteristic tiin a tower of finite étale covers d@t[1/p]; in the end, this
lets one computétalecohomology ofR[1/p] in terms of mixed characteristic data (see [Fal02, page PA@orem]).

In contrast, in the approach of [Bei] as well as this papee constructs towers df-covers of mixed characteristic
schemes that malkde Rhantohomology classes highpydivisible (see the proof of Theorem 10.13); that such cever
suffice for applications is entirely due to Corollary 10.4eTineness of the-topology over the étale topology lets one
construct the required covers rather easily, while corepletschewing delicate algebraic considerations encoethte
for example, in [Fal02, page 196]; this is the main reasorttierrelative simplicity of the present proof. An inter-
mediate between the two methods just described is Schapgioach (unpublished): he works étale locally on the
underlying rigid analytic space, which, roughly speakismgounts to working witt-covers of a mixed characteristic
formal model that are étale over the generic fibre (by Raglisaheory [Ray74]).

10.2. The semistable comparison map.Using the results 0§10.1, we will construct the promised comparison map,
and show it is an isomorphism. For technical reasons pémtain monodromy, we introduce some notation first:

Notation 10.16. We continue using Notation 9.1. In particular, we fix once &mdall a uniformiserr € Ok
and, unless otherwise specified, the rig (and hence ald x-schemes) are viewed &E[z]-algebras viar — .
The Faltings-Breuil ringRe,. is defined asiR(oK,C/MT/(W[I],w) or, equivalently, as the-adic completion of the
pd-envelope oV [z] — Ok (by Lemma 9.19).

We now come to the main theorem:

Theorem 10.17.Let (X, X) € Pk be a semistable pair wittk = X[1/p] and 9(X) = Og. Then there is an

o~

Agg-linear comparison map

-

Compgt : RTerys (X, can)/ (W], ), Ocrys) @y, Ast — RT(Xgg 440 Zp) @z, Ast

that preserves filtrationg7 i -actions, Frobenius actions, Chern classes of vector es@ind monodromy operators.
Moreover,Compst admits an inverse up t6?, whereg € Acrys is Fontaine’s element from Proposition 9.16, and
d = dim(X). In particular, Fontaine’sCy;-conjecture is true.

We refer to Remark 10.7 for the definition of a semistable. ddie left hand side above is defined via

-

RFCWS((Y, can)/(Wlz],x), Ocrys) := Rlirrln Rfcrys((Y, can)/(Wlz],z) @ Z/p", Ocrys)-

This is a module oveRy,., and agrees with the crystalline cohomology gro@fig X/ Ry ) of [Fal02]. The groups
in [Fal99, §2] are slightly different because the rirfgy, there is complete for the Hodge filtration. Informally, we

may think of RT¢,ys((X, can)/(W(z], ), Ocrys) as the de Rham cohomology oveRo ., =) of a deformation of
(X, can) across(Ro,,z) — (Og,can); as such deformations might not exist globally &n one has to proceed
using cohomological descent. In the sequel, we will ofteitesfomp instead ofCompi when the meaning is clear.

Remark 10.18. The Chern classes mentioned in Theorem 10.17 live in cliysgland étale) cohomology. In the
spirit of the present paper, a more natural operation woeltblilefine Chern classes in derived de Rham cohomology
that lift crystalline Chern classes via the comparison nodpsopositions 3.25 and 7.18. A natural solution to this las
problem is to develop a theory of derived de Rham cohomologglgebraic stacks over some baseand construct
universal Chern classes RI'(B(GL,),dRp1,)/s). This can indeed be done over= Spec(Z/p"), and will

be discussed in [Bhad]. We simply remark here that our dafmiproceeds by cohomological descent instead of
imitating lllusie’s definition of derived de Rham cohomojoghe latter is problematic to implement for Artin stacks
as itis not clear how to define wedge powers of a complex tratpported in both positive and negative degrees.

Construction of the mapWe first explain the idea informally. The sheafification adfion gves a natural map

erys (X, X) /W) = Acrys((X, X) @w Ox). Up to completion, the right hand side is theadic étale cohomol-

ogy of X+, by thep-adic Poincare lemma. The left hand side is closely relaighle left hand side of the desired map

Compi!: the latter is the de Rham cohomology (Of, can) relative to(W|z], ), while the former is the de Rham
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cohomology of( X, can) overW (up to completions). Hence, adjunction aimost gives a mapetlesired form. To
move from de Rham cohomology relativelid to that relative ta 1 [z], ), we extend scalars tds;.
Now for the details. First consider the map

Comp,, : Aerys(X, X) ®7 Z/p" — Uerys((X, X) ®0, Ox) ®2 Z/p" — RTp_((X, X) ® Ok, Acrys ®z Z/p").
The left hand side is computed as
terys (X, X) @z Z/p" = RU(X, AR5t cony ywv @ W/p") = RT((X, can)/W @w W/p", Ocrys)-
while the right hand side is computed by the Poincare lemnhe to

RIp (X, X)®0k, Acrys®zZ/p") ~ Rl'p_((X, X)®0k, Ay @z Z/p") ~ RI(X o0 Z/D" ®Z/pnAcry5/p".

Takingp-adic limits then shows that lim,, Comp,, gives a map

—

Rl crys (X, can) /W, Ocrys) — RI (X5 ) Z,) @z, Acrys-

This map is linear over the algebra map

—

Aerys (O, can) /W) — Gerys (O, can) /W) = Aerys.

Hence, linearisation gives af,ys-linear map

—

RTcrys (X, can) /W, Ocrys) @ Acrys = RI'(X% 0 Z,) @z, Acrys- (9)

Aerys (O can) /W)

We base change this aloafy,ys — AAst to get a map

—

RT crys (X, can) /W, Ogrys) @ Ay — RI(X% v Lp) @z, A

Aerys (O ,can) /W)

Proposition 9.24 shows that the maﬂom)/W) — Ay factors G'x-equivariantly through the natural map
a((Og,can)/W) — Re, . Hence, one can rewrite the preceding map as

—

(chrys((f, can) /W, Oerys) ® As = RU(Xg 41, Zp) ®3z, Asi.

Aerys (O can) /W) ROK) ORo

The parenthesized term on the left can be identified With, s ((X, can)/(W[z], x), Ocrys): cOmparison with the

crystalline theory identifieRI c,ys ((X, can) /W, O.ys) With the complex

— —_ d — - dx
(chryS((Xa can)/(Wz], ), Ocrys) = Rlerys((X, can)/(Wlz], ), Ocrys) - ?)a
where the differential is defined using the Gauss-Manin eotian, while the compleu((OKﬁ)/W) is identified
with the complex
d dx d dx
Thus we obtain the promised map

—

Comp3t : Rl erys((X, can) /(W (2], 2), Ocrys) @ Ast = RO(Xpg 44, Zp) @z, Ase. O

Remark 10.19. It is clear from the construction that the only reason to luhssge up to4§t from Acryb is to ensure

that the mam((OK,/c;)/W) — Ay, factorsG- -equivariantly through the natural map(OK, can)/W) — Ry,
If we are prepared to work onlg x__-invariantly (with notation as in Proposition 9.20), thénistbase change is
unnecessary by the same proposition, i.e., the map (9) alazovke identified with & __-invariant comparison map

—

RFcrys((Ya can)/(W[ac], -77)7 ocrys) ®ROK Acryb — RF( K L6t Zp) ®ZP Acrys-

This is the form of the comparison map in [Fal02].
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Remark 10.20. Let X be a smoottK -variety, and fix a hypercoverings, Y, ) in P resolvingX+, i.e.,(Ys, Ys) €
P4 is a simplicial object equipped with an equivalentg| ~ X;-. Applying Theorem 10.13 and following the
arguments above gives a magys((Ye, Yo )/W)[1/p] — RI'(X% 600 Zp) ® Acrys[1/p]. Itis tempting to identify the

left hand side withRT'4r (X/K) ®x K as de Rham cohomology satisfieslescent in characteristit; this would
give a de Rham comparison isomorphism axer,s[1/p]. However, this reasoning is flawedl,ys((Ys, Yo ) /W)[1/p]
computeslerivedde Rham cohomology in characteriqiicso it is quite degenerate (see Corollary 2.5). To recoer th
de Rham comparison theorefr, one must work with the Hodge-completed picture so as to rtiekeharacteristic

0 theory non-degenerate. When implemented, this strategis e the proof in [Bei].

Deducing consequences frgBei]. Construction shows that the comparison map defined abovanipatible with

the one defined in [Bei]: the map definedat. cit. uses the same sife-, and is defined using the Hodge-completed
versions of the sheaves used above. This means that we cacedeshsequences for the map defined above from
those proven in [Bei], provided we work in suitable torsioeef contexts. In particular, {iG,,,, G,,,) denotes the usual
semistable compactification 6f,,, relative toO i andt is the co-ordinate otx,,,, then the map

— dt =

Ag 1= Heyo(Gon, Gon) [ (Wa, 2), Ocrys) Do, At = Hit(Gm& K, Zp) @A = H (G K, Zy (1))@ As (1)

crys
sends the generatéif to the elemenkt ® 5; here
k€ HY (G, @ K,Z,(1))
denotes the generator of that group determined by the cdoigaystem of the Kummer torsors (i.e., the-power
map onG,,), and
B € Acrys(—1) C Ag(—1) ~ Hom(Zy(1), Ast)
is Fontaine’s mage) — log([¢]). Given this compatibility, one formally deduces many mdfer example, since the
comparison map commutes with Mayer-Vietoris sequencesladece that the following diagram commutes:

B

Ag{-1} Aq(-1)
lc?ys(ou)) l St (0(1))
—~ Com
H2(PY/(Wz, ), Ocrys) @, Ay —= H(PL . Z,) ©z, Aq.

HereAAst{—l} denotes the ringl,; with the filtration shifted byl, and the fact used above is tHatandx correspond

to the Chern classes 6f(1) in the de Rham and the étale theories under the Mayer-V4attentification ofH/ ! (G,,,)
with H2(P'). Compatibility with cup-products combined with compaitlgi with restriction along a hyperplane
P"~! C P" leads to similar diagrams as above ot (P™). In particular, the comparison map commutes with Chern
classes of ample line bundles, up to the appropriate powgyicé., for a semistable pairX, X) € Px and an ample
line bundleC € Pic(X), we have a commutative diagram for dll
ﬂd

Ag{—d} Ag(—d)

l@“(@(l)))d l(oi’*(ou)))d

Comp

—

H24((X, can)/ (Wa],2), Ocrys) ©ro . Ay — H*(X7z o1, Zp) @z, As.

Since any line bundle can be written as a difference of anipéedundles on a projective scheme, we deduce the same
for arbitrary line bundles. Passing to the flag variety theavps the same statement for arbitrary vector bundlés.

Gysin compatibility.Fix proper smooth geometrically connect&tdschemesX andY. Assume that there exist
semistable pairgX, X) and (Y,Y) in Px extendingX andY, and a morphismi : (Y,Y) — (X, X) of pairs
such thay” — X is a closed immersion of codimensierhat is transverse to all the strata, i.e., étale locallyXgn
we have an isomorphisiX,Y) ~ X* x (A<, {0}) for some semistable schem& (see [Fal02, Theorem 2, page
252]). Then Poincare dulaity (see [Fal02, page 248]) giveadjoint pushforward map

i Rl"crys((Y7 can)/(Wlz], ), Ocrys){ —c}H—2¢] — RI((X,can)/(W(z], x), Ocrys)-
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Similarly, by [Del77, Theorem XVII.3.2.5], we also have aspforward
" RI( Y& ¢vr Zp)(—c)[-2¢] = RT' (X7 4. Zp)

that is Poincare dual to the pullback. We claim that thesencota with Comp up to 5. This is proven via a
deformation to the normal cone argument which reduces deraions to the case wheke= P(N" & O5) for some
vector bundleNY onY with i being the0 section ofNV. Instead of repeating the argument here, we simply refer to
[OIs09, Proposition 14.7]; the setup there assumesXhandY” are smooth, but this is not necessary for the proof as
long asi is transverse as above (use [Fal02, bottom of page 249] toneed;>* with transverse pullbacks). O

Verification of Chern class behavioufor the reader’s convenience, we recall the Chern classatiloiijty of C’ompet,
this discussion is simply a version of [B&B.6] in the present context. Note that all objects involvedz;, G, < 7,
k, and the comparison map — are defined owér Since the comparison maps are compatible with change ef bas
field, we can assume th@tx = W. We will show the desired compatibility modupé for all n.

Fix an integen > 0, and letf,, : (T,,,T,,) — = (G, G.,,) be the semistable compactification of ifepower map
on G,, obtained by takindgT;,, T,,) = (G, G,,), with the map being thg™-th power map orG,,,. The mapf,, is
Hpn-equivariant for the standayd,~-action on the source, and so we have a pullback map

hpipn

_ _ N hpipn _
f;: : acrys(Gm; Gm)/pn — (acrys((Tann) ®W OK)/pn) =~ (acrys(Tn; Tn)/pn ®W/p" Acrys/pn)

Here the right hand side is the homotopy-fixed points ofithe(O i )-action on the displayed complex, and can be
computed via group cohomology. We will identify the image‘itéfunderf;. We need some notation first. Ligt be

the co-ordinate off}, satisfyingt = t£". The formula — % will be viewed as defining a map

C: pn (@) — Acrys/D"

obtained from the first Chern class map: i — Aerys[1] Of Construction 9.15 by the formuta= w1 (¢é1)/p".
This is simply the reduction of Fontaine’s ma@pmodulop™ by Proposition 9.16.

Claim 10.21. The image of

dt

? c m_ 1(acrys(GmaG )/p

underm_y(f) coincides with the class defined by theocycle in group cohomology of,~ (O ) (computed using
the standard complex) determined by the map(Ox ) = Acrys/P" — derys(Tn, Tn) /" Qw/pr Acrys /D™

Proof sketch.The eIemen% maps to

dt,  d(tE" = TN o
0=p 22 2 M) €y, ) o B0) ),

som_1(fx )(dT) is the obstruction téltt—" being,~ -invariant, but this obstruction is tautologically the map

(o dCt) dty dC :

2 tn ¢
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Now consider the diagram

[ - - hupn
Kl = C1crys(Gm7 Gm)/pn (acrys((Tn7 Tn) ®W OK)/pn)
. = —_— hppn c _ I hppn
(‘Agrys((TnaTn) ®W OK)/pn) ~ (Acrys((TnzTn) ®W OK)/pn) = K2
b |~

~

— h”p”’ I
K3 := (Rrét(Tn ® K,Z/p"(1)) ®z/pn Acrys/p"(*l)) ~—— Rl (G @w K, Z/p" (1)) ®z/pn Acrys/P" (—1) = K.

Here all maps are the natural ones, the mapan isomorphism by étale descéenis an isomorphism by the compu-
tation of the cohomology of constant sheaves in/tHepology, and: is an isomorphism by the Poincare lemma.
The earlier computation shows that tHe € 7_; (k) maps to the class in_;(K>) determined by the cocycle
(—1® % On the other hand, since the tor§or — G, is precisely the torsor determined bynodulop™, the class
Kk ® B € m_1(K4) maps unde to the cocycle determined by ® g in w_1 (K3) (computed by group cohomology).
One then chases definitions to show that the imagé®f3 undercob in 7_; (K5) coincides with the earlier map.[J

Proof of Theorem 10.17We have already constructed the ntapnp and shown that it respects pullbacks, cup prod-
ucts, Chern classes of vector bundles and Gysin maps. Asahelf . /p" — Acrys/p™ OCcurring in Theorem 10.13
respects Frobenius actions (with actions defined using /Ene8.47), so doeSomp.

For monodromy compatibility, consider the map

—

Comp’ : RI((X, can)/ (W [z], ), Ocrys) — Rlat (X7 440 Zp) @z, Ast

Whoseﬁs\t-linearisation yield€omp. As explained in Remark 9.25, we can identify

At 2 RTcrys(f, Ocrys)
wheref : (Wz]z) — (Of,can) is the map defined by (x) = 7. Thus, the(IW[z], z)-modules occurring on both
sides ofComp’ acquire a connection relative i@ by the Gauss-Manin connection on crystalline cohomologg. W
will prove the desired monodromy compatibility 8bmp by showing thaomp’ is equivariant for this connection.
Replacing Theorem 10.13 with the modified version from R&mér14 in the construction dfomp leads to a map

—

Comp” : RT((X, can)/(W/z], z), Ocrys) = RTet( Xz 41 Zp) @z, ARy

wheref : (W[z],2) — (Ok,can) is the map defined by — 7. The mapComp’ is obtained fromComp” by

composition withComp : d/R\f — R crys(f; Ocrys) from Remark 9.25. Sinc€omp, is equivariant for the natural
connection (by Remark 9.26), it suffices to show tBainp” is equivariant for the connection. This follows from the
connection-equivariance of the maf) — ay; from Remark 10.14, which is obvious. HenGemp’ (and thusComp)
are equivariant for the Gauss-Manin connection, as desired

To see thaomp admits an inverse up t6?, note that both the source and targe€ofnp satisfy Poincare duality
(by [Fal02, page 248]). A formal argument (using the regséion of the diagonal defined in [Fal02, pp 238-239],
and the Gysin and Chern class compatibilityoinp) then implies thaComp admits an inverse up 6. O

Remark 10.22. The method employed above can be used to show a comparisdhbesveen de Rham and étale
cohomology oveglobal fields as we now sketch in case 6. Fix an algebraic closur of Q, and letZ be the
integral closure ofZ in Q. SetAyqr to be the derived projective limit QiRz/Z ®z Z/n asn varies through all

integers. Then one can show thég.g is a filtered (ordinary) fIatZ-aIgebra equipped with &al(Q/Q)-action,
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and an endomorphism, for each prime number. Moreover, the methods used above can be massaged to give the
following (loosely formulated) analog @i :

Theorem. Let X be a semistable proper variety ov®. Then log de Rham cohomology of a semistable model for
X is isomorphic to the&Z-étale cohomology oXa once both sides are base changed to a localisatioA @l (while
preserving all natural structures on either side).

Essentially by Proposition 3.47, the log de Rham cohomolafgy semistable model fok carries a Frobenius
operatorg, for each primep; the analog of the monodromy operator is tﬁégca\n)/z-module structure. It is very
conceivable that the global theorem can deduced fronptheic ones by an induction procedure; this question, the
preceding theorem, and related matters will be investibelgewhere.
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