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p-ADIC DERIVED DE RHAM COHOMOLOGY

BHARGAV BHATT

ABSTRACT. This paper studies the derived de Rham cohomology ofFp andp-adic schemes, and is inspired by Beilinson’s
work [Bei]. Generalising work of Illusie, we construct a natural isomorphism between derived de Rham cohomology and
crystalline cohomology for lcimapsof such schemes, as well logarithmic variants. These comparisons give derived de Rham
descriptions of the usual period rings and related maps inp-adic Hodge theory. Placing these ideas in the skeleton of [Bei]
leads to a new proof of Fontaine’s crystalline conjectureCcrys and Fontaine-Jannsen’s semistable conjectureCst.

1. INTRODUCTION

This paper grew from an attempt at lifting Beilinson’s proof[Bei] of Fontaine’sCdR conjecture inp-adic Hodge
theory to the more refined crystalline and semistable settings. We briefly recall the surrounding picture in§1.1, and
then discuss how this fits into the present paper in§1.2. An actual description of the contents is available in§1.4.

1.1. Background. LetX be a smooth projective variety over a characteristic0 fieldK. There are two Weil cohomol-
ogy theories naturally associated toX : the de Rham cohomologyH∗

dR(X), which is aK-vector space equipped with
the Hodge filtration, and thep-adic étale cohomologyH∗

ét(X) := H∗
ét(XK ,Zp), which is aZp-module equipped with

a continuous action ofGal(K/K), for a fixed primep. These theories are often closely related:
If K = C, then the classical de Rham comparison theorem identifies deRham cohomology with Betti cohomology,

and lies at the heart of Hodge theory and the theory of periods. Composition with Artin’s comparison between Betti and
étale cohomology (tensored up along some embeddingZp →֒ C) then yields an isomorphism between de Rham and
étale cohomologies. The key to de Rham’s theorem is the following observation: the spaceX(C) admits sufficiently
many small opensU ⊂ X(C) whose de Rham cohomology is trivial. This observation givesa map fromH∗

dR(X) to
the constant sheafC onX(C), and thus a map of (derived) global sections

Compcl : H
∗
dR(X) → H∗(X(C),C) ≃ H∗

ét(X)⊗Zp C.

Having defined the map, it is easy to show thatCompcl is an isomorphism: one can either check this locally onX , or
simply argue that a map of Weil cohomology theories with goodformal properties is automatically an isomorphism.

Now assume thatK a p-adic local field. The analogue of the preceding complex analytic story is Fontaine’s de
Rham comparison conjectureCdR. Specifically, Fontaine constructed a filteredGal(K/K)-equivariantK-algebra
BdR that is complete for the filtration, and conjectured the existence of a functorial isomorphism

CompdRét : H∗
dR(X)⊗K BdR ≃ H∗

ét(X)⊗Zp BdR

compatible with the tensor product filtrations and Galois actions. This statement occupies a central position inp-adic
Hodge theory and arithmetic geometry, and has numerous applications.1 There are multiple proofs ofCdR by now
(see§1.3), and we briefly discuss the recent one [Bei] as it is conceptually simple and closest to this paper. Beilinson
observed that the complex analytic proof sketched above also works in thep-adic context provided one measures
“small opens” using Voevodsky’sh-topology. More precisely, he showed that (completed) de Rham cohomology
sheafifies to a constant sheaf on theh-topology of ap-adic scheme; one then constructsCompdRét and shows that it is
an isomorphism, just as forCompcl above. The two main ingredients of his proof are: de Jong’s alterations theorems
for constructing the desired “small opens” (via thep-divisility results of [Bhae]), and the Hodge-completed version of
Illusie’s derived de Rham cohomology theory for working with the de Rham cohomology of some non-smooth maps.

The Fontaine-Jannsen semistable conjectureCst is a refinement of theCdR conjecture takes into account the ge-
ometry ofX and the arithmetic ofK better. LetK andX be as above, letK0 denote the maximal unramified subfield
of K, and assume thatX admits a semistable model overOK , the ring of integers ofK. Then Kato’s theory of

1The arithmetic applications are too many to list, but there are geometric applications too. For instance, theCdR conjecture (together with some
basic structure theory ofBdR) implies that the Galois representationH∗

ét
(X) “knows” the Hodge numbers ofX; this can be used to prove the

birational invariance of Hodge numbers for smooth minimal models overC [Ito03].
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log crystalline cohomology endowsH∗
dR(X) with the following additional structures: aK0-structureH∗

dR(X)0, a
monodromy operator, and a Frobenius action. The semistableconjecture predicts a comparison isomorphism

Compstét : H
∗
dR(X)0 ⊗K0 Bst ≃ H∗

ét(X)⊗Zp Bst,

preserving all natural structures; hereBst is a filteredGal(K/K)-equivariantK0-subalgebra ofBdR that has a Frobe-
nius action and a monodromy operator2. This conjecture is ap-adic analog of Steenbrink’s work [Ste76] on limiting
mixed Hodge structures. It is also stronger than theCdR conjecture: (a) the left hand side ofCompstét (with its nat-
ural structures) recovers theGal(K/K)-moduleH∗

ét(X)[1/p], while the same is not true for the left hand side of
CompdRét , and (b) one can deduceCdR from Cst using de Jong’s theorem [dJ96]. Roughly speaking, the difference
betweenCdR andCst is one of completions: the ringBst is not complete for the Hodge filtration, so it detects more
than its completed counterpart. One major goal of this paperis give a simple conceptual proof of theCst conjecture.

1.2. Results. Our proof ofCst follows the skeleton of [Bei] sketched above, except that wemust prove non-completed
analogs of all results in derived de Rham cohomology whose completed version was used in [Bei]. In fact, this latter
task takes up the bulk (see§3 and§7) of the paper: until now (to the best of our knowledge), there were essentially
no known techniques for working with the non-completed derived de Rham cohomology, e.g., one did not know a
spectral sequence with computableE1 terms that converged to derived de Rham cohomology. The basic observation
in this paper is that Cartier theory works extremely well in the derived world in complete generality:

Theorem(see Proposition 3.5). Letf : X → S be a morphism ofFp-schemes, and letdRX/S denote Illusie’s derived
de Rham complex. Then there exists a natural increasing bounded below separated exhaustive filtrationFilconj• , called
the conjugate filtration, ofdRX/S that is functorial inf , and has graded pieces computed by

Cartieri : gr
conj
i (dRX/S) ≃ ∧iLX(1)/S [−i].

In particular, for any morphismf as above, there is aconjugatespectral sequence that converges to derived de
Rham cohomology off , and hasE1 terms computing cohomology of the wedge powers of the (Frobenius-twisted)
cotangent complex. Using this theorem, we prove several newresults on derived de Rham cohomology forp-adic
schemes. For example, we show the following non-completed version of a comparison isomorphism of Illusie:

Theorem (see Theorem 3.27). Let f : X → S be an lci morphism of flatZ/pn-schemes. Then there is a natural
isomorphism

Rf∗dRX/S ≃ Rf∗OX/S,crys.

Here theOS-complex on the right hand side is the relative crystalline cohomology off3. A satisfying consequence
is that divided powers, instead of being introducedby fiatas in the crystalline story, appear very naturally in derived
de Rham theory: they come from the divided power operations on the homology algebra of the Eilenberg-Maclane
(infinite loop) spaceK(Z, 2) ≃ CP∞. We use this result in§9 to give derived de Rham descriptions of various period
rings that occur inp-adic Hodge theory, such as Fontaine’s ringAcrys:

Theorem (see Proposition 9.9). There is a natural isomorphismAcrys ≃ ̂dRZp/Zp
.

The previous isomorphism can be used to “see” certain natural structures onAcrys. For example, Fontaine’s mapβ :
Zp(1) → Acrys (ap-adic version of2πi) is recovered as a Chern class map, see Construction 9.15; the corresponding
completed picture describesBdR as in [Bei,§1.5]. With this theory in place, in§10, we can show:

Theorem (see Theorem 10.17). TheCcrys andCst conjectures are true.

As mentioned before, this result is not new, but our method ofproof is. The difficulty, as always, lies in constructing
a functorial comparison mapCompstét. We do so by simply repeating Beilinson’s construction ofCompdRét using non-
completed derived de Rham cohomology instead of its completed cousin; this is a viable approach thanks to the
results above. The underlying principle here may be summarised as follows: for any algebraic varietyX overK, the
Acrys-valued étale cohomology ofXK is theh-sheafification of thep-adic derived de Rham cohomology of anyp-adic

2If X extends to a proper smoothOK -scheme, then the monodromy operator onH∗

dR
(X)0 is trivial, and one expects the comparison isomor-

phism to be defined over a smaller Galois and Frobenius equivariant filtered subalgebraBcrys ⊂ Bst; this is the crystalline conjectureCcrys.
3In [Bhaf], we use the preceding comparison theorem and the conjugate filtration on derived de Rham cohomology to show thatthe crystalline

cohomology groups of even very mildly singular projective varieties (such as stable singular curves) are infinitely generated. In fact, we fail to find
a single example of a singular projective variety with finitely generated crystalline cohomology!
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compactification ofXK (see Theorem 10.13). A slight difference in implementationfrom [Bei] is that we must use the
conjugate spectral sequence, instead of the Hodge spectralsequence, to access [Bhae]. OnceCompstét is constructed,
showing isomorphy is a formal argument in chasing Chern classes (analogous to the elementary fact that a distance
preserving endomorphism of a normed finite dimensional realvector space is an isomorphism).

A technical detail elided above is that thep-adic applications (as well as the method of proof) necessitate a theory
of derived de Rham cohomology in thelogarithmiccontext. Rudiments of this can be found in [Ols05], but, again, no
non-completed results were known. Hence, in§6 and§7, we set up elements of “derived logarithmic geometry” using
simplicial commutative rings and monoids (we stick to the language of model categories instead of∞-categories for
simplicity of exposition). In particular, Gabber’s logarithmic cotangent complex from [Ols05,§8] appears naturally
in this theory (see Remark 6.6), and one has logarithmic versions of the results mentioned above, e.g., a conjugate
spectral sequence for computing log derived de Rham cohomology is constructed in Proposition 7.4, and a comparison
isomorphism with log crystalline cohomology in the lci case(almost) is shown in Theorem 7.22.

1.3. A brief history of the comparison theorems. The comparison conjectures of Fontaine and Fontaine-Jannsen are
a series of increasingly stronger statements comparing thep-adic étale cohomology of varieties overp-adic local fields
with their de Rham cohomology (see [Fon82, Fon83, Ill90, Ill94]). These conjectures were made almost three decades
ago, and have proven to be extremely influential in modern arithmetic geometry. All these conjectures have been
proven now: by Faltings [Fal88, Fal89, Fal02] using almost ring theory, by Niziol [Niz98, Niz08] via higher algebraic
K-theory, and by Tsuji [Tsu99] (building on work on Bloch-Kato [BK86], Fontaine-Messing [FM87], Hyodo-Kato
[HK94], and Kato [Kat94]) using the syntomic topology. Morerecently, Scholze has reproven these conjectures (and
more) using his language of perfectoid spaces, which can be viewed as a conceptualisation of Faltings’ work. However,
these proofs are technically challenging (for example, Gabber and Ramero’s presentation of the almost purity theorem
in [Fal02] takes two books [GR03, GR]), and it was hoped that asimpler proof could be found. Such a proof was
arguably found by Beilinson in [Bei] for the de Rham comparison conjectureCdR; the present paper extends these
ideas to prove the crystalline conjectureCcrys and the semistable conjectureCst. While this paper was being prepared,
Beilinson has also independently found an extension [Bei11] of [Bei] to proveCcrys andCst; his new proof bypasses
derived de Rham cohomology in favor of the more classical logcrystalline cohomology of Kato [Kat89,§5-§6].
However, both the present paper and [Bei11] share an essential idea: using the conjugate filtration to prove a Poincare
lemma for non-completed cohomology (compare the proof of Theorem 10.13 with [Bei11,§2.2]).

1.4. Outline. Notation and homological conventions (especially surrounding filtration convergence issues) are dis-
cussed in§1.5. In§2, we review the definition of derived de Rham cohomology from[Ill72, §VIII.2], and make general
observations; the important points are the conjugate filtration and the transitivity properties. Specialising modulopn

in §3, we construct a map from derived de Rham cohomology to crystalline cohomology in general, and show that it
is an isomorphism in the case of an lcimorphism(see Theorem 3.27). The main tool here is a derived Cartier theory
(Proposition 3.5), together with some explicit simplicialresolutions borrowed from [Iye07].

Next, logarithmic analogues of the preceding results are recorded in§6 and§7 based on Gabber’s approach to the
logarithmic cotangent complex from [Ols05,§8]; see Theorem 7.22 for the best logarithmic comparison result we
show. Along the way, rudiments of “derived logarithmic geometry” (with simplicial commutative monoids and rings)
are set up in§4 and parts of§6 as indicated in§1.24. Thep-adic limits of all these results are catalogued in§8.

Moving from algebraic geometry towards arithmetic, we specialise the preceding results to give derived de Rham
descriptions of thep-adic period rings in§9 (as indicated in§1.2). In fact, the picture extends almost completely
to any integral perfectoid algebra in the sense of Scholze [Sch11], as is briefly discussed in Remark 9.10. Using
these descriptions, we prove the Fontaine-JannsenCst-conjecture in§10 as discussed in§1.2. The key result here is
crystallinep-adic Poincare lemma (Theorem 10.13). We also briefly discuss relations with other proofs of thep-adic
comparison theorems in Remark 10.15.

1.5. Notation and conventions.For a ringA, the ringA[x]〈x〉 (or sometimes simplyA〈x〉) is the free pd-polynomial
ring in one variablex overA; in general, we use〈〉 to denote divided power adjunctions. Any tensor product appearing
is always derived unless otherwise specified. For aZp-algebraA, we letÂ := limnA/p

n be thep-adic completion
of A unless explicitly specified otherwise. For a complexK of Zp-modules, we define the derivedp-adic completion

4We have tried to avoid using higher categorical language in the non-logarithmic story. However, model categories (or, better,∞-categories)
seem necessary to cleanly present the logarithmic story, atleast if one wishes to not get constantly bogged down in arguments that require showing
that certain constructions are independent of choices of projective resolutions (= cofibrant replacements).
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asK̂ := R limnK ⊗Z Z/pn; if K hasZp-flat terms, thenK̂ is computed as the termwisep-adic completion ofK.
Note that the notation is inconsistent in the case thatK = A is Zp-algebra that is notZp-flat, in which case we will
always mean the derived completion. We also setTp(K) := RHomZ(Qp/Zp,K); there is a natural equivalence
Tp(K) ≃ K̂[−1]. All exterior powers that occur are derived as in [Qui70a,§7].

We often employ topological terminology when talking aboutcomplexes. A complexK over an abelian category
A is calledconnectiveif π−i(K) = Hi(K) = 0 for i > 0; it is calledcoconnectiveif the preceding vanishing holds
for i < 0 instead. We say thatK is eventually connectiveif some shift ofK is connective, and similarly foreventually
coconnective; these notions correspond to right-boundedness and left-boundedness in the derived category. A complex
K is said to ben-connectedif πi(K) = 0 for i ≤ n. All these notions are compatible with the usual topological ones
under the Dold-Kan correspondence, which will be used without further comment.

The symbol∆ denotes the category of simplices. For a categoryC, we letsC denote the categoryFun(∆opp,C) of
simplicial objects inC; dually, we usecC to denote the categoryFun(∆,C) of cosimplicial objects. For an objectX
in a categoryC, we letC/X (resp.CX/) denote the category of objects ofC lying over (resp. lying under)X , and for a
mapX → Y , we writeCX//Y for CX/ ×C C/Y .

If P• ∈ scA is a simplicial cosimplicial object in an abelian categoryA, then we let|P•| ∈ Ch•(A) denote
the cochain complex obtained by totalising the associated double complex (via direct sums); this is a homotopy-
colimit over ∆opp whenP• is viewed as defining an object ofsCh•(A) via the Dold-Kan correspondence. The
canonical filtration on each cosimplicial objectPn fits together to define an increasing bounded below separated
exhaustive filtration on|P•| that we call theconjugate filtrationFilconj• (|P•|). The associated graded piecegrconjk (|P•|)
may be identified as the object inCh•(A) defined byπk(P•)[−k]. Dually, if Q• ∈ csA denotes a cosimplicial
simplicial object in an abelian categoryA, then we letTot(Q•) ∈ Ch•(A) be the chain complex obtained by taking
a homotopy-limit over∆ of Q•, viewed as an object ofcCh•(A); the canonical filtration on each simplicial object
Qn fits together to define a descreasing bounded above separatedcomplete filtration onTot(Q•) that we also call the
conjugate filtrationFil•conj(Tot(Q

•)). The associated graded piecegrkconj(Tot(Q
•)) may be identified as the object in

Ch•(A) defined byπk(Q•)[k].
The following facts will be used freely. IfA• → B• is a weak equivalence of simplicial rings, andM• is a

simplicialA•-module withMn flat overAn for eachn, then the adjunction mapM• →M•⊗A•
B• is an equivalence

of simplicial abelian groups; see [Ill71,§I.3.3.2 and Corollary I.3.3.4.6]. A mapM → N of (possibly unbounded)
complexes ofZ/pn-modules is a quasi-isomorphism if and only ifM ⊗Z/pn Z/p→ N ⊗Z/pn Z/p is so; we refer to
this phenomenon as “devissage.”

LetSet, Ab, Mon, andAlg be the categories of sets, abelian groups, commutative monoids, and commutative rings
respectively. There are some obvious pairs of adjunctions between these categories, and we employ the following
notation to refer to these:FreeSetAb : Set → Ab denotes the free abelian group functor with right adjointForgetAb

Set,
whileFreesSetsAb : sSet → sAb denotes the induced functor on simplicial objects, etc. A simplicial object in a concrete
category (likeSet, Ab, Mon, Alg, etc) is called discrete if the underlying simplicial set isso.

Finally, many theorems in the paper are formulated and proven in ring-theoretic language. The globalisation to
quasi-compact quasi-separated schemes is immediate (either via rings in a topos using [Ill72,§II.2.3], or by Mayer-
Vietoris arguments and homotopy-coherence considerations), but we ignore this issue here to improve readability.

1.6. Acknowledgements.The author warmly thanks Sasha Beilinson for enlightening conversations and communi-
cations. The overwhelming intellectual debt this paper owes to [Bei] is evident. Moreover, the idea thatp-adically
completed derived de Rham cohomology (but without Hodge completion) could lead to a crystalline analogue of [Bei]
was expressed as a “hope” by Beilinson, and was the starting point of the author’s investigations. An equally substan-
tial yet intangible debt is owed to Quillen’s manuscripts [Qui70a, Qui70b] for teaching the author how to work with
simplicial commutative rings. Special thanks are due to Johan de Jong for numerous useful conversations, especially
about homological algebra, and consistent encouragement.The author is also grateful to Jacob Lurie for conversations
that clarified many homotopical aspects of this work, and to Martin Olsson for a discussion of [Ols05].

2. THE DERIVED DE RHAM COMPLEX

Illusie’s derived de Rham complex [Ill72,§VIII.2] is a replacement for the usual de Rham complex that works
better for singular morphisms; the idea, roughly, is to replace the cotangent sheaf with the cotangent complex in the
definition of the usual de Rham complex. In this section, we remind the reader of the definition, and some basic
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properties; these depend on a good understanding of projective resolutions of simplicial commutative rings, and a
robust formal framework for these is provided by Quillen’s model structure [Qui70a] onsAlg reviewed in§4.1.

Definition 2.1. Let A → B be a ring map, and letLB/A denote the cotangent complex. Then the derived de Rham
complex ofB overA is defined to be|Ω•

P•(B/A)/A| ∈ D(ModA)whereP•(B/A) → B is the canonical free resolution
of B as anA-algebra, whereΩ•

C/A denotes the usual de Rham complex of anA-algebraC. More generally, the same
definition applies whenA→ B is a map of simplicial commutative rings in a topos.

Elaborating on Definition 2.1, observe thatΩ•
P•(B/A)/A naturally has the structure of a simplicial cochainA-

complex. The associated total complex|Ω•
P•(B/A)/A| is constructed usingdirect sumsalong antidiagonals, and may

be viewed as a homotopy-colimit over∆opp of theA-cochcain complex valued functorn 7→ Ω•
Pn(B/A)/A; we typically

picture it as a second quadrant bicomplex. This descriptionmakes it clear thatdRB/A comes equipped with anE∞-
algebra structure, and a decreasing separated exhaustive multiplicative Hodge filtrationFil•H . One can show that
dRB/A can be defined using any free resolutionP• → B, and thus the functor ofdR−/A commutes with filtered
colimits; see also [Ill72,§VIII.2.1.1]. In fact, the functordR−/A commutes witharbitrary colimits when viewed as a
functorE∞-algebras, but we do not discuss that here (see Proposition 2.7 though).

Remark 2.2 (Lurie). Fix a ringA, and letsAlgA/ be the∞-category of simplicialA-algebras. There is a natural

subcategoryAlgFreeA/ ⊂ sAlgA/ spanned by free simplicially constantA-algebras. In fact,AlgFreeA/ generatessAlgA/

under homotopy-colimits. The functorB 7→ dRB/A onsAlgA/ is the left Kan extension ofF 7→ Ω•
F/A onAlgFreeA/ .

An important structure present ondRB/A is the conjugate filtration:

Proposition 2.3. LetA→ B be a ring map (or a map of simplicial commutative rings). Thenthere exists a functorial
increasing bounded below separated exhaustive filtrationFilconj• on dRB/A. This filtration can be defined using the
conjugate filtration on the bicomplexΩ•

P•/A
for any freeA-algebra resolutionP• → A, and is independent of the

choice ofP•. In particular, there is a convergent spectral sequence, called theconjugate spectral sequence, of the form

Ep,q
1 : Hp+q(gr

conj
p (dRB/A)) ⇒ Hp+q(dRB/A)

that is functorial inA→ B (here we follow the homological convention thatdr is a mapEp,q
r → Ep−r,q+r−1

r ).

Proof. The filtration in question is simply the conjugate filtrationon the homotopy-colimit of a simplicial cosimplicial
abelianA-module, as explained in§1.5; we briefly reproduce the relevant arguments for the readers convenience. Let
P• → B as anA-algebra. Then eachΩ•

Pn/A
comes equipped with the canonical filtration by cohomology sheaves.

This leads to an increasing bounded below (at0) separated exhaustive filtration of the bicomplexΩ•
P•/A

(filter each
column by its canonical filtration). The associated graded pieces of this filtration are naturally simplicialA-cochain
complexes, with thei-th one given by simplicialA-cochain complex defined byn 7→ Hi(Ω•

Pn/A
)[−i]. The conjugate

filtrationFilconj• ondRB/A is simply the corresponding filtration on the associated single complex|Ω•
P•/A

|. If F• is a
different free resolution ofB as anA-algebra, thenF• is homotopy equivalent toP•. In particular, the simplicialA-
cochain complexesn 7→ Hi(Ω•

Pn/A
) andn 7→ Hi(Ω•

Fn/A) are homotopy equivalent, which ensures that the resulting
two filtrations on the associated single complex|Ω•

P•/A
| ≃ dRB/A ≃ |Ω•

F•/A
| coincide. Finally, the claim about

the spectral sequence is a general fact about increasing bounded below separated exhaustive filtrations on cochain
complexes; see [Lur11, Proposition 1.2.2.14] for more on this spectral sequence. �

Remark 2.4. Proposition 2.3 refers to the potentially nebulous notion of filtrations on objects of the derived category
D(ModA) of A-modules. To make this precise, one could work withD(Fun(N,ModA)) whereN is the poset of
natural numbers, viewed as a category. There is a (left Quillen) homotopy-colimit functorD(Fun(N,ModA)) →

D(ModA), and the first assertion of Proposition 2.3 amounts to a canonical lift d̃RB/A of dRB/A along this functor
(by the formulan 7→ |τ≤nΩ

∗
P•/A

|). The graded piecesgrconjp (dRB/A) described above are recovered as the cone of

the mapevp−1(d̃RB/A) → evp(d̃RB/A), whereevn : D(Fun(N,ModA)) → D(ModA) is evaluation atn ∈ N, etc.
In the sequel, this picture will be implicit in all discussions of filtered objects in derived categories.

A corollary of Proposition 2.3 if that iff : B → C is a map ofA-algebras that induces an equivalencegrconji (f)
for all i, then it also induces an equivalence ondRB/A → dRC/A, i.e., the passage fromdRB/A to⊕pgr

conj
p (dRB/A)

is conservative. A consequence is that the conjugate filtration is degenerate in characteristic0:
5



Corollary 2.5. LetA→ B be a map ofQ-algebras. ThenA ≃ dRB/A.

Proof. Let A → P• → B be a free resolution ofB relative toA. ThenΩ•
Pn/A

≃ A[0] as polynomial algebras in

characteristic0 have no de Rham cohomology. It follows thatgrconji (dRB/A) = 0 for i > 0, andgrconj0 (dRB/A) = A.
The convergence of the conjugate spectral sequence then does the rest. �

Remark 2.6. Corollary 2.5 renders derived de Rham theory useless in characteristic0. A satisfactory fix is todefine
dRB/A as the Hodge-completed version of the complex used above; roughly speaking, this amounts to using the prod-
uct totalisation instead of the direct sum totalisation when defining the derived de Rham complex. More practically, the
derived Hodge-to-de-Rham spectral sequence is forced to converge, which immediately gives meaning to the resulting
theory as it specialises to classical de Rham cohomology forsmooth maps. This is also the variant used in [Bei], but is
insufficient for thep-adic applications of§10. In [Bhaa], we show that this Hodge-completed theoryalwayscoincides
with Hartshorne’s algebraic de Rham cohomology [Har75] forfinite type maps of noetherianQ-schemes (and thus
with Betti cohomology overC), generalising Illusie’s theorem [Ill72, Theorem VIII.2.2.8] from the lci case.

We will see later that the conjugate filtration is quite non-trivial away from characteristic0, and, in fact, forms the
basis of most of our computations. We end this section by discussing the behaviour under tensor products.

Proposition 2.7. LetA→ B andA→ C be ring maps. Then we have the Kunneth formula

dRB⊗AC/A ≃ dRB/A ⊗A dRC/A

and a base change formula.

dRB/A ⊗A C ≃ dRB⊗AC/C ,

where all tensor products are derived.

Proof. Both claims are clear when the algebras involved are polynomial A-algebras. The general case follows from
this by passage to free resolutions. �

3. DERIVED DE RHAM COHOMOLOGY MODULO pn

In this section, we investigate derived de Rham cohomology for maps ofZ/pn-algebras. By an elementary de-
vissage, almost all problems considered reduce to the case of Fp-algebras. In this positive characteristic setting, our
main observation is thatderivedCartier theory gives a useable description of derived de Rham cohomology, and can
be effectively used to reduce questions in derived de Rham theory to questions about the cotangent complex.

Notation 3.1 (Frobenius twists). Let f : A → B be a map ofFp-algebras. LetFrobA : A → A be the Frobenius
morphism onA, and defineB(1) := B⊗A,FrobA = B⊗AFrob∗A = Frob∗AB to be the Frobenius twist ofA, viewed
as a simplicial commutative ring; explicitly, ifP• → B denotes a free resolution ofB overA, thenP• ⊗A Frob∗A
computesB(1). If TorAi (Frob∗A,B) = 0 for i > 0, thenB(1) coincides with the usual (underived) Frobenius twist,
which will be the primary case of interest to us. The following diagram and maps will be used implicity when talking
about these twists:

B

B(1)

Frobf

aa❈
❈

❈

❈

❈

❈

❈

❈

B

FrobB

ll

FrobAoo

A

f

TT

f(1)

OO

A
FrobAoo

f

OO

The main reason to introduce (derived) Frobenius twists (for us) is thatdRB/A is naturally a complex ofB(1)-
modules; this can be seen directly in the case of polynomial algebras, and thus follows in general.
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3.1. Review of classical Cartier theory. We briefly review the classical Cartier isomorphism in the context of free
algebras; see [DI87, Theorem 1.2] for more.

Theorem 3.2(Classical Cartier isomorphism). LetA → F be a free algebra withA anFp-algebra. Then there is a
canonical isomorphism ofF (1)-modules

C−1 : ∧kLF (1)/A ≃ Hk(Ω•
F/A)

which extends to a gradedF (1)-algebra isomorphism

C−1 : ⊕k≥0 ∧
k LF (1)/A[−k] → ⊕k≥0H

k(Ω•
F/A)[−k].

Proof. To defineC−1, we may reduce to the caseA = Fp via base change. Once overFp, we can pick a deformation

F̃ of the free algebraF toW2 together with a compatible lift̃Frob : F̃ → F̃ of Frobenius. We then define

C−1 =
F̃rob

∗

p

in degree1, and extend it by taking exterior products; this makes sensebecausẽFrob
∗

: Ω1
F̃ /W2

→ Ω1
F̃ /W2

is

divisible byp (as it is zero modulop). One can then check using local co-ordinates that this recipe leads to the desired
description ofHp(dRF/A). �

Remark 3.3. Continuing the notation of (the proof of) Theorem 3.2, we note that one can do slightly better than
stated: taking tensor products shows thatF̃ ∗ : Ωi

F̃ /W2
→ Ωi

F̃ /W2
is divisible bypi, and hence0 for i ≥ 2. It follows

that the definition forC−1 given above leads to an equivalence ofcomplexes

⊕k≥0 ∧
k LF (1)/A[−k]

≃
→ Ω•

F/A,

i.e., that the de Rham complexΩ•
F/A is formal. This decomposition depends on the choices ofF̃ andF̃rob, but the

resulting map on cohomology is independent of these choices.

Remark 3.4. Theorem 3.2 is also true when the free algebraF is replaced by any smoothA-algebraB. A direct
way to see this is to observe that both sides of the isomorphism C−1 occurring in Theorem 3.2 localise for the étale
topology onF (1); since smooth morphismsA → B are obtained from polynomial algebras by étale localisation, the
claim follows Zariski locally onSpec(B), and hence globally by patching. The underlying principle here of localising
the de Rham cohomology on the Frobenius twist will play a prominent role in this paper (in the derived context).

3.2. Derived Cartier theory. We begin by computing the graded pieces of the conjugate filtration in characteristicp.

Proposition 3.5(Derived Cartier isomorphism). LetA → B be a map ofFp-algebras. Then the conjugate filtration
Filconj• ondRB/A isB(1)-linear, and has graded pieces computed by

Cartieri : gr
conj
i (dRB/A) ≃ ∧iLB(1)/A[−i].

In particular, the conjugate spectral sequence takes the form

Ep,q
1 : H2p+q(∧

pLB(1)/A) ⇒ Hp+q(dRB/A).

Proof. Let P• → B be the canonical free resolution ofB overA by freeA-algebras. The associated graded pieces
grconji (dRB/A) are given by totalisations of the simplicialA-cochain complexes determined byn 7→ Hi(Ω•

Pn/A
)[−i].

By Theorem 3.2, one hasHi(Ω•
Pn/A

)[−i] ≃ Ωi

P
(1)
n /A

, and hence

grconji (dRB/A) ≃ ∧iLB(1)/A[−i].

The rest follows formally. �

Before discussing applications, we make a definition.

Definition 3.6. A mapA → B of Fp-algebras is calledrelatively perfectif B(1) → B is an equivalence; the same
definition applies to simplicial commutativeFp-algebras as well. A mapA→ B of Z/pn-algebras is calledrelatively
perfect modulop if A⊗Z/pn Fp → B ⊗Z/pn Fp is relatively perfect; similarly forZp-algebras.

7



Example 3.7. Any étale map is relatively perfect, and any map between perfectFp-algebras is relatively perfect. By
base change, the mapZp →W (R) is relatively perfect for any perfectFp-algebraR.

The connection between the preceding definition and de Rham theory is:

Corollary 3.8. LetA → B be a map ofZ/pn-algebras that is relatively perfect modulop. ThenLB/A ≃ 0, and
dRB/A ≃ B.

Proof. By devissage, we may immediately reduce to the case thatA is anFp-algebra, andA → B is relatively
perfect. We first show thatLB/A ≃ 0. Indeed, for anyA-algebraB, theA-algebra mapB(1) → B induces the0
mapLB(1)/A → LB/A (resolveB by freeA-algebras, and use that Frobenius on the terms of the free resolution lifts

Frobenius onB). Thus, ifB(1) → B is an isomorphism, thenLB/A andLB(1)/A must both be0. The conjugate

filtration ondRB/A is therefore trivial in degree> 0, so one obtainsdRB/A ≃ B(1) ≃ B, where the second equality
follows from the relative perfectness. �

Question 3.9.What is an example of anFp-algebra mapA→ B with LB/A ≃ 0 butB(1) → B not an isomorphism?
ForA = Fp itself, we are asking forFp-algebrasB with LB/Fp

= 0 that are not perfect; note that such algebras have
to be discrete. It is conceivable that such examples do not exist, but we do not have a proof (except whenA → B is
finitely presented). This question also arose in Scholze’s work [Sch11] on perfectoid spaces.

We use the derived Cartier isomorphism to show that derived de Rham cohomology coincides with classical de
Rham cohomology for smooth maps:

Corollary 3.10. LetA→ B be a map ofZ/pn-algebras, and letP• → B be a resolution ofB bysmoothA-algebras
(not necessarily free). Then there is a natural equivalence

dRB/A ≃ |Ω•
P•/A

|.

In particular, ifA→ B is a smooth map ofZ/pn-algebras, thendRB/A ≃ Ω•
B/A.

Proof. To see this, letQ• → B be a resolution ofB by freeA-algebras. By the cofibrancy ofQ•, we can pick a map
Q• → P• lying overB (and hence an equivalence). This defines a mapdRB/A → |Ω•

P•/A
|. To check that this map is

an equivalence, we may reduce to the case thatA andB are bothFp-algebras by devissage and and base change. In
this case, the claim follows from the convergence of the conjugate spectral sequence and the fact thatLB(1)/A can be

computed usingQ(1)
• orP (1)

• (see [Ill71, Proposition III.3.1.2]). �

Question 3.11.Observe that the proof above also shows that whenA → B is smooth map ofFp-algebras, then the
conjugate filtration ondRB/A coincides with thecanonicalfiltration. What can be said modulopn?

Remark 3.12. Note that Corollary 3.10 is completely false in characteristic 0. By Corollary 2.5, one hasdRB/A ≃ A
wheneverQ ⊂ A. On the other hand, ifA → B is smooth, thenB itself provides a smooth resolution ofB in the
category ofA-algebras, and the resulting de Rham cohomology groups are the usual de Rham cohomology groups of
A→ B (by[Gro66]) which need not be concentrated in degree0. For example,Q → Q[x, x−1] has a one-dimensional
(usual) de Rham cohomology group of degree1 (with generatordxx ), but no derived de Rham cohomology.

Using the conjugate filtration, we can prove a connectivity estimate for derived de Rham cohomology:

Corollary 3.13. LetA→ B be a map ofZ/pn-algebras such thatΩ1
B/A is generated byr elements for somer ∈ Z≥0.

ThendRB/A is (−r − 1)-connected.

Proof. To see this, first note that by devissage, we may reduce to the case that bothA andB areFp-algebras. In this
case, via the conjugate spectral sequence, it suffices to check that∧nLB(1)/A is (n− r− 1)-connected for eachn. By

base change fromB, note that a choice of generators ofΩ1
B/A defines a triangle ofB(1)-modules

F → LB(1)/A → Q

with F a free module of rankr, andQ a connectedB(1)-module. The claim now follows by filtering wedge powers
of LB(1)/A using the preceding triangle, and noting that∧aF = 0 for a > r, while∧bQ is (b − 1)-connected. �

Next, we show that derived de Rham cohomology localises for the étale topology; note that there is no analogous
description for usual de Rham cohomology in characteristic0.
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Corollary 3.14. LetA → B → C maps ofFp-algebras, and assume thatB → C is étale (or simply thatB → C is
flat withLC/B = 0). Then

dRB/A ⊗B(1) C(1) ≃ dRC/A and Hi(dRB/A)⊗B(1) C(1) ≃ Hi(dRC/A),

where all Frobenius twists are computed relative toA.

Proof. The first statement implies the second by taking cohomology and using:dRB/A is a complex ofB(1)-modules
whileB(1) → C(1) is flat since it is a base change ofB → C alongB → B(1). For the first, note that there is indeed
a natural mapdRB/A ⊗B(1) C(1) → dRC/A. The claim now follows by computing both sides using the conjugate
spectral sequence and noting that∧qLB(1)/A ⊗B(1) C(1) ≃ ∧qLC(1)/A sinceLC(1)/B(1) = Frob∗ALC/B = 0. �

Next, we relate the first differential of the conjugate spectral sequence (or, rather, the first extension determined by
the conjugate filtration) to a liftability obstruction. Letf : A → B be a map ofFp-algebras. Then one has an exact
triangle

grconjq−1(dRB/A) → Filconjq (dRB/A)/Fil
conj
q−2(dRB/A) → grconjq (dRB/A)

By Proposition 3.5, we havegrconjq (dRB/A) ≃ ∧qLB(1)/A[−q]. The above triangle thus determines a map

obq : ∧
qLB(1)/A → ∧q−1LB(1)/A[2]

We can relateob1 to a geometric invariant ofB as follows:

Proposition 3.15. In the preceding setup, assume that a liftÃ of A to Z/p2 has been specified. Then the mapob1
coincides with the obstruction to liftingB(1) to Ã when viewed as a point ofMap(LB(1)/A, B

(1)[2]).

Sketch of proof.We first constructob1 explicitly. Fix a free resolutionP• → B, and letτ≤1Ω
•
Pn/A

denote the two-

term cochain complexPn → Z1(Ω1
Pn/A

); the associationn 7→ τ≤1Ω
•
Pn/A

defines a simplicial cochain complex

totalising toFilconj1 dRB/A. Identifying the cohomology ofΩ•
Pn/A

via the Cartier isomorphism then gives a exact
triangle of simplicial cochain complexes

P
(1)
• → τ≤1Ω

•
P•/A

→ L
P

(1)
• /A

[−1].

Taking a homotopy-colimit and identifying the terms then gives an exact triangle ofB(1)-modules

B(1) → K → LB(1)/A[−1].

The boundary mapLB(1)/A[−1] → B(1)[1] for this triangle realisesob1. To see the connection with liftability, observe

that the boundary mapL
P

(1)
n /A

[−1] → P
(1)
n [1] defines a point ofMap(L

P
(1)
n /A

, P
(1)
n [2]) that iscanonicallyidentified

with the point defining the obstruction to liftingP (1)
n to Ã, i.e., with the map

L
P

(1)
n /A

[−1]
an→ LA/Zp

⊗A P
(1)
n

bn→ P (1)
n [1]

wherean is the Kodaira-Spencer map forA → P
(1)
n andbn is the derivation classifying the square-zero extension

Ã → A pulled back toP (1)
n ; see [DI87, Theorem 3.5]. Taking homotopy-colimits then shows that the pointob1 ∈

Map(LB(1)/A, B
(1)[2]) constructed above also coincides with the map

LB(1)/A[−1]
a
→ LA/Zp

⊗A B
(1) b

→ B(1)[1],

wherea = |a•| is the Kodaira-Spencer map forA→ B(1), while b = |b•| is the derivation classifying the square-zero
extensionÃ→ A pulled back toB(1); the claim follows. �

Remark 3.16. As mentioned in [Ill], there is a mistake in [Ill72,§VIII.2.1.4] where it is asserted that for any algebra
mapA → B, there is a natural isomorphism⊕p ∧p LB(1)/A[−p] ≃ dRB/A rather than simply an isomorphism of
the graded pieces; we thank Beilinson for pointing out [Ill]to us. Based on Proposition 3.15, a non-liftable (toW2)
singularity gives an explicit counterexample to the directsum decomposition. A particularly simple example, due to
Berthelot and Ogus, isA = Fp andB = Fp[x1, . . . , x6](x

p
i , x1x2 + x3x4 + x5x6).
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The classical Cartier isomorphism has an important extension [Ill96, Remark 5.5.1]: the description of the coho-
mology of the de Rham complex of a smooth morphism in terms of differentials on the Frobenius twists lifts to a
description of the entire de Rham complex in the presence ofZ/p2-lift of everything in sight, including Frobenius.
We show next that a similar picture is valid in the derived context:

Proposition 3.17(Liftable Cartier isomorphism). Let Ã → B̃ be a map of flatZ/p2-algebras such that there exist
compatible endomorphisms̃FA andF̃B lifting the Frobenius endomorphisms ofA = Ã⊗Z/p2 Fp andB = B̃ ⊗Z/p2

Fp. Then there exists an equivalence of algebras

Cartier−1 : ⊕k≥0 ∧
k LB(1)/A[−k] ≃ dRB/A

splitting the conjugate filtration from Proposition 3.5.

Proof. Our proof uses the model structure on simplicial commutative rings due to Quillen [Qui67], see§4.1. The
liftability assumption on Frobenius shows that if̃P• → B̃ denotes a freẽA-algebra resolution of̃B, then there exists
a maph̃ : P̃• → P̃• which is compatible withF̃A and F̃B up to homotopy, and has a modulop reduction that

is homotopic to the Frobenius endomorphism ofP• := P̃• ⊗Z/p2 Z/p. Now setP̃•

(1)
:= P̃• ⊗

Ã,F̃A
Ã, and let

g̃ : P̃•

(1)
→ P̃• denote the induced̃A-algebra map. Observe that̃P•

(1)
is cofibrant as añA-algebra (as it is the

base change of the cofibrant̃A-algebraP̃• along some map̃A → Ã), and the reduction modulop mapP̃• → P• is
a fibration (since it is so as a map of simplicial abelian groups). Using general model categorical principles (more
precisely, the “covering homotopy theorem,” see [Qui67, Chapter 1, page 1.7, Corollary]), we may replaceg̃ with a
homotopicÃ-algebra map to ensure that the modulop reduction of̃g is equalto the relative Frobenius mapP (1)

• → P•.
With this choice, the induced map

Ω1(g̃∗) : Ω1

P̃•
(1)

/Ã
→ Ω1

P̃•/Ã

reduces to the0 map modulop. Taking wedge powers and using Lemma 3.18, all the induced maps

Ωk(g̃∗) : Ωk

P̃•
(1)

/Ã
→ Ωk

P̃•/Ã

are0 for k > 1. In particular, there exist well-defined maps

1

p
· Ωk(g̃∗) : Ωk

P
(1)
• /A

→ Ωk
P•/A

,

all 0 for k > 1, with the property that the square

Ω1

P
(1)
• /A

1
p ·Ω

1(g̃∗)
//

d

��

Ω1
P•/A

d

��
Ω2

P
(1)
• /A

1
p ·Ω

2(g̃∗)
// Ω2

P•/A

commutes. Since the bottom map is0, there is a well-defined map of double complexes

Ω1

P
(1)
• /A

[−1] → Ω•
P•/A

which totalises to give a map
LB(1)/A[−1] → dRB/A.

The Cartier isomorphism in the smooth case shows that the preceding morphism splits the conjugate filtration in degree
1. We leave it to the reader to check that taking wedge powers and using the algebra structure ondRB/A now defines
the desired isomorphism

Cartier−1 : ⊕k≥0 ∧
k LB(1)/A[−k] → dRB/A. �

The following lemma used in the proof of Proposition 3.17.

Lemma 3.18. Let R be a flatZ/p2-algebra. Letf : K1 → K2 be a map of simplicialR-modules. Assume that
f ⊗R Fp is 0 as a map of complexes. IfK2 has projective terms, then∧kf = 0 for k > 1.
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Sketch of proof.The assumption thatf is 0 modulop implies thatf factors as a map

K1 → p ·K2
i
→֒ K2.

Moreover, sinceK2 is projective, the derived exterior powers off are computed in the naive sense, without any
cofibrant replacement of the source. Thus,∧k(f) factors through∧k(i). However, it is clear∧k(i) = 0 for k > 1, and
so the claim follows. �

Remark 3.19. The proof of Proposition 3.17 made use of certain choices, but the end result is independent of these

choices. If we have a different free resolutioñP•

′
→ B̃ and a different liftg̃′ of Frobenius oñP•

′
compatible with

the chosen lift onB, then one can still run the same argument to get a decomposition of dRB/A. The resulting
map∧kLB(1)/A[−k] → dRB/A is homotopic to the one constructed in the proof above, sincethe lifts g̃ and g̃′

are homotopic as maps of̃A-algebras, i.e., we may choose añA-algebra equivalencẽP• → P̃•

′
lying over B̃ that

commutes with̃g andg̃′, up to specified homotopy.

Remark 3.20. Some homological analysis in the proof of Proposition 3.17 becomes simpler if we specify lifts toZp

insteadZ/p2. Indeed, onceZp-lifts have been specified, the resulting map on forms (the analogue of the map labelled
Ω1(g̃∗) above) is divisible byp as a map, and hence the mapsΩk(g̃∗) will be divisible bypk as maps for allk, without
modifying the original choice of̃g as we did at the start of the proof.

Using Proposition 3.17, we can give an explicit example of a morphism ofFp-algebras whose derived de Rham
cohomology is not left-bounded. In particular, this shows that derived de Rham cohomology cannot arise as the
cohomology of a sheaf of rings on a topos. In future work [Bhab], we will construct aderived crystalline sitewhich
will be a simplicially ringed∞-topos functorially attached to a morphismf : X → S of schemes, and show that the
cohomology of the structure sheaf on this topos is canonically isomorphic to derived de Rham cohomology.

Example 3.21(Non-coconnectivity of derived de Rham cohomology). Let A be aFp-algebra with the following
two properties: (a) the cotangent complexLA/Fp

is unbounded on the left (i.e., the singularitySpec(A) is not lci),
(b) the algebraA admits a lift toZ/p2 along with a lift of the Frobenius map. For example, we can take A =
Fp[x, y]/(x

2, xy, y2) with the obvious lift (same equations), and obvious Frobenius lift (raise to thep-th power on the
variables). Then the derived Cartier isomorphism shows that

dRA/Fp
≃ ⊕i≥0 ∧

i LA/Fp
[−i].

In particular, the complexdRA/Fp
is unbounded on the left.

Next, we discuss the transitivity properties for derived deRham cohomology. Our treatment here is unsatisfactory
as we do not develop the language of coefficients in this paper.

Proposition 3.22. LetA → B → C be a composite of maps ofFp-algebras. ThendRC/A admits an increasing
bounded below separated exhaustive filtration with graded pieces of the form

dRB/A ⊗Frob∗
AB Frob∗A

(
∧n LC/B[−n]

)
,

where the second factor on the right hand side is the base change of∧nLC/B[−n], viewed as anB-module, along the
mapFrobA : B → Frob∗AB.

Proof. Let P• → B be a polynomialA-algebra resolution ofB, and letQ• → P• be a termwise-polynomialP•-
algebra resolution ofC. ThendRC/A ≃ |Ω•

Q•/A
|. For eachk ∈ ∆opp, transitivity for de Rham cohomology (along

smooth morphisms, see [Kat70,§3]) endows each complexΩ•
Qk/R

with an increasing bounded below separated ex-
haustive filtrationFil• given by the (usual) de Rham complexesΩ•

Pk/A
(τ≤nΩ

•
Qk/Pk

), whereτ≤nΩ
•
Qk/Pk

) is the canon-
ical trunction in degrees≤ n ofΩ•

Qk/Pk
equipped with the Gauss-Manin connection for the compositeA→ Pk → Qk.

The graded pieces of this filtration are then computed to be the (usual) de Rham complexesΩ•
Pk/A

(Hn(Ω•
Qk/Pk

)[−n]).
By the classical Cartier isomorphism, the groupHn(Ω•

Qk/Pk
) is computed asFrob∗Pk

Ωn
Qk/Pk

, and the Gauss-Manin
connection coincides with the induced Frobenius descent connection; see also [Kat70, Theorem 5.10]. Lemma 3.24
below then gives an identification

Ω•
Pk/A

(Hn(Ω•
Qk/Pk

)[−n]) ≃ Ω•
Pk/A

⊗Frob∗
A
Pk

(
Frob∗AΩ

n
Qk/Pk

[−n]) ≃ Ω•
Pk/A

⊗Frob∗
A
Pk

Frob∗A
(
∧n LQk/Pk

[−n]
)
.

The desired claim now follows by taking a homotopy-colimit overk ∈ ∆opp. �
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Remark 3.23. Let A
f
→ B

g
→ C be two composable maps ofZ/pn-algebras. Proposition 3.22 is a shadow of an

isomorphismdRf (dRg) ≃ dRg◦f ; we do not develop the language here to make sense of the left hand side, but simply
point out that in the case thatf andg are both smooth, this is the transitivity isomorphism for crystalline cohomology
using Berthelot’s comparison theorem between de Rham and crystalline cohomology (and Corollary 3.10). A similarly
satisfactory explanation in general will be given in [Bhab].

The following general fact about Frobenius descent connections was used in Proposition 3.22.

Lemma 3.24. Let f : A → B be a map ofFp-algebras that exhibitsB as a polynomialA-algebra. LetM be a
B(1)-module. Then the de Rham cohomology of the Frobenius descent connection onFrob∗fM takes the shape:

Ω•
B/A(Frob

∗
fM) ≃ Ω•

B/A ⊗B(1) M.

Proof. This lemma is essentially tautological as the connection onFrob∗fM is defined to be the first differential in the
complex appearing on the right above. �

3.3. Connection with crystalline cohomology.Classical crystalline cohomology is very closely related to de Rham
cohomology modulopn: the two theories coincide for smooth morphisms. We will show that there exists an equally
tight connection classical crystalline cohomology and derived de Rham cohomology: the two theories coincide forlci
morphisms. In future work [Bhab], we enhance this result by constructingderived crystalline cohomologythat always
coincides with derived de Rham cohomology, and also with theclassical crystalline cohomology for lci maps.

We start off by constructing a natural transformation from derived de Rham cohomology to crystalline cohomology.
For simplicity of notation, we restrict ourselves to the affine case.

Proposition 3.25. Let f : A → B be a map ofZ/pn-algebras. Then there is a natural map of Hodge-filtered
E∞-algebras

CompB/A : dRB/A → RΓ((B/A)crys,Ocrys)

that is functorial inA→ B, and agrees with the one coming from[Ber74, Theorem IV.2.3.2]whenA→ B is smooth
(via Corollary 3.10).

We remind the reader that the right hand side is the crystalline cohomology ofSpec(B) → Spec(A), and is defined
using nilpotent thickenings ofB relative toA (asZ/pn-algebras) equipped with a pd-structure on the ideal of definition
compatible with the pd-structure on(p); see [Ber74, Chapter IV].

Proof. LetP• → B be a free simplicial resolution ofB overA. For eachk ≥ 0, the mapPk → B is a surjective map
from a freeA-algebra ontoB; let Ik ⊂ Pk be the kernel of this map. Since we are working overZ/pn, it follows from
Berthelot’s theorem (see [Ber74, Theorem V.2.3.2]) that wehave a filtered quasi-isomorphism

Ω•
Pk(B/A)/A ⊗Pk

DPk
(Ik)

≃
→ RΓ((B/A)crys,Ocrys)

whereDPk
(Ik) denotes the pd-envelope of the idealIk compatible with the standard divided powers onp. Ask varies,

we obtain a map of simplicial cochain complexes

Comp•B/A : Ω•
P•/A

→ Ω•
P•/A

⊗P•
DP•

(I•) (1)

By Berthelot’s theorem, the right hand simplicial object isquasi-isomorphic to the constant simplicial cochain complex
on the crystalline cohomology ofB relative toA. More precisely, the natural map

Ω•
P0/A

⊗P0 DP0(I0) → |Ω•
P•/A

⊗P•
DP•

(ker(P• → B))|

is an equivalence with both sides computing the crystallinecohomology ofA → B. The mapComp•B/A then defines
a map

CompB/A : dRB/A → RΓ((B/A)crys,Ocrys)

in the derived category. This morphism respects the Hodge filtrationFil•H as the map (1) does so. It is clear from the
construction and the proof of Corollary 3.10 that this map agrees with the classical one whenA→ B is smooth. �

Remark 3.26 (Lurie). Remark 2.2 can be used to give an alternate construction of the mapCompB/A. For F ∈

AlgFreeA/ , Berthelot’s theorem [Ber74, Theorem V.2.3.2] gives a natural mapΩ•
F/A → RΓcrys((F/A)crys,Ocrys). If

one defines the crystalline cohomology ofB ∈ sAlgA/ as that ofπ0(B), then general properties of left Kan extensions
give a mapdRB/A → RΓcrys((B/A)crys,Ocrys) for anyB ∈ sAlgA/.
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The goal of this section is to prove the following theorem:

Theorem 3.27. Let f : R → B be a map of flatZ/pn-algebras for somen > 0. Assume thatf is lci. Then the map
CompB/R from Proposition 3.25 is an isomorphism.

Remark 3.28. We suspect Theorem 3.27 is true without the flatness condition onR (or, equivalently, onB sincef
has finiteTor-dimension). However, we do not pursue this question here.

Our strategy for proving Theorem 3.27 is to first deal with thespecial case thatB = R/(f) for some regular
elementf ∈ R, and then build the general case from this one using products, Berthelot’s comparison theorem, and
Corollary 3.10. The following special case therefore formsthe heart of the proof:

Lemma 3.29. LetA→ B be the mapFp[x]
x 7→0
→ Fp. ThenCompB/A from Proposition 3.25 is an isomorphism.

The idea of the proof of Lemma 3.29 is very simple. The liftable Cartier isomorphism from Proposition 3.17 lets
one explicitly computedRB/A, while the crystalline cohomology can be explicitly computed by Berthelot’s theorem
[Ber74, Theorem IV.2.3.2]; both sides turn out to be isomorphic toFp〈x〉, the free pd-algebra in one variable overFp.
Checking thatCompB/A is an isomorphism takes a little tracing through definitions, leading to a slightly long proof.

Proof. We fix theZ/p2-lift Ã := Z/p2[x] → Z/p2 =: B̃ ofA→ B together with the lifts of Frobenius determined by
the identity onB̃ andx 7→ xp on Ã. Using the liftable Cartier isomorphism, the preceding choice gives a presentation

dRB/A ≃ ⊕i≥0 ∧
i LB(1)/A[−i]

as algebras. LetI = (x) ⊂ A denote the ideal definingA → B. One easily computes thatB(1) ≃ Fp[x]/(x
p) as an

A-algebra, and hence

a : LB(1)/A ≃ Ip/I2p[1] ≃ B(1) · y[1]

is free of rank1 on a generatory in degree1 that we choose to correspond toxp ∈ Ip/I2p under the isomorphisma.
Computing derived exterior powers then gives a presentation

dRB/A ≃ ⊕i≥0Fp[x]/(x
p) · γi(y) (2)

as an algebra. On the other hand, since the crystalline cohomology ofA→ B is given byFp〈x〉 (by [Ber74, Theorem
V.2.3.2], for example), we have a presentation

RΓ((B/A)crys,Ocrys) ≃ Fp〈x〉 ≃ ⊕i≥0Fp[x]/(x
p) · γip(x) (3)

as algebras. We will show that the mapCompB/A respects the direct sum decompositions appearing in formulas (2)
and (3), and induces an isomorphism on each summand; the ideais to first understand the image ofy, and then its
divided powers.

Claim 3.30. The mapCompB/A sendsy to−γp(x) ∈ Fp〈x〉.

Proof. First, we make the derived Cartier isomorphism explicit by choosing particularly nice free resolutions and
Frobenius lifts as follows. Let̃P• → Z/p2 be the bar resolution ofZ/p2 as aZ/p2[x]-algebra as described in, say,
[Iye07, Construction 4.13]; see Remark 3.31 for a more functorial description. The first few (augmented) terms are:

(
. . . // //// Z/p2[x, t] //// Z/p2[x]

)
≃ // Z/p2

where the twoZ/p2[x]-algebra maps fromZ/p2[x, t] → Z/p2[x] are given byt 7→ x andt 7→ 0 respectively. This
resolution has the property that the terms̃Pn are polynomial algebrasZ/p2[x][Xn] over a setXn with n elements,
and the simplicialZ/p2[x]-algebra mapZ/p2[x][Xn] → Z/p2[x][Xm] lying over a map[m] → [n] ∈ Map(∆) is

induced by a map of setsXn → Xm∪{x, 0}. In particular, the map̃Frobn : Z/p2[x][Xn] → Z/p2[x][Xn] defined by

F̃robn(x) = xp andF̃robn(xi) = xpi for eachxi ∈ Xn defines an endomorphism̃Frob : P̃• → P̃• of P̃• which visibly
lifts Frobenius modulop, and also lies over the chosen Frobenius endomorphism ofZ/p2[x]. SetP• = P̃• ⊗Z/p2 Fp.

We will use the free resolutionP• → Fp together with the lift̃P• and the Frobenius endomorphism described above
in order to understand the derived Cartier isomorphism and its composition withCompB/A.
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The elementdt ∈ Ω1
Fp[x,t]/Fp[x]

realises a generator ofH−1(LFp/Fp[x]) when we useΩ1
P•/Fp[x]

to calculate

LFp/Fp[x]. The Frobenius pullback of this class then determines a generator ofH−1(L(Fp[x]/(xp))/Fp[x]) which coin-
cides withy; this can be easily checked. Chasing through the definition of the Cartier isomorphism, we find that the
image ofy in dRB/A is given bytp−1dt ∈ Ω1

Fp[x,t]/Fp[x]
when the latter group is viewed as a subgroup of the group

of 0-cocyles indRB/A = |Ω•
P•/A

|. On the other hand, after adjoining divided powers oft andx (i.e., moving to the

crystalline side following the comparison recipe from§3.25), the elementtp−1dt ∈ Ω1
Fp[x,t]/Fp[x]

⊗Fp[x,t] Fp〈x, t〉

may be written as

tp−1dt = dv

(
(p− 1)!γp(t)

)
= (p− 1)! · dv(γp(t)) = dv(γp(t)),

wheredv : Fp〈x, t〉 → Ω1
Fp[x,t]/Fp[x]

⊗Fp[x,t] Fp〈x, t〉 is the vertical differential in the first column of

|Ω•
P•/Fp[x]

⊗P•
Dker(P•→Fp)(P•)|,

the bicomplex computing the crystalline cohomology ofFp[x] → Fp via the resolutionP•. Since the sum of the
vertical and horizontal differentials is0 in cohomology, it follows that the image oftp−1dt in crystalline cohomology
coincides with the element

−dH(γp(t)) ∈ Fp〈x〉.

The horizontal differentialdH : Fp〈x, t〉 → Fp〈x〉 is the difference of theFp[x]-algebra maps obtained by sendingt
to x and0 respectively, and so we have−dH(γp(t)) = −γp(x), as claimed. �

By Claim 3.30, the mapCompB/A induces an isomorphism of the first two summands appearing informulas (2)
and (3). The rest follows by simply observing that

γk(−γp(x)) =
(−1)k · xkp

k! · (p!)k
= γkp(x) · u,

whereu is aunit in Fp; the point is thatnk := (kp)!
k!pk is an integer, andnk andnk+1 differ multiplicatively by a unit

modulop. Thus,CompB/A induces isomorphisms on all the summands, as desired. �

Remark 3.31. The bar resolution used in Lemma 3.29 may be described more functorially (in the language of§4.2)
as follows. LetC = EN be the category with object setN, and a unique morphismn1 → n2 if n2 − n1 ≥ 0. The
monoid law onN makesC a strict symmetric monoidal category, and the obvious map onobject sets defines a strict
symmetric monoidal functorN → C. Passing to nerves gives a mapN → N(C) of simplicial commutative monoids.
In co-ordinates,N(C)k = Nk+1 with the identification sending(n0, . . . , nk) ∈ Nk+1 to thek-simplex ofC with
verticesn0, n0 + n1, . . . , n0 + n1 + · · · + nk. The mapN → N(C)k = Nk+1 is simplyn 7→ (n, 0, 0, . . . , 0),
i.e., mapn ∈ N to the constantk-simplex based atn ∈ C. The categoryC has an initial object, so the augmentation
N(C) → ∗ is a weak equivalence (see [Qui73, Corollary 2, page 84]). Moreover, the explicit description makes it clear
thatN → N(C) is a termwise freeN-algebra (using [Qui67, Remark 4, page 4.11], one can also check thatN(C)
is cofibrant insMonN/). By Proposition 4.4, the induced free algebra mapZ[N] → Z[N(C)] in sAlgZ[N]/ is a free

Z[N]-algebra resolution ofZ[N]
N7→1
→ Z. IdentifyingZ[N] ≃ Z[t] via 1 ∈ N 7→ t gives an explicit freeZ[t]-algebra

resolution ofZ[t]
t7→1
→ Z. The reduction modulop2 of this resolution (up to a change of variablest 7→ t+ 1) was used

in Lemma 3.29; the Frobenius lift is induced by the multiplication byp map on monoids.

Remark 3.32. The proof of Lemma 3.29 “explains” the two algebra isomorphisms
(
Fp[x]/(x

p)
)
〈y〉 ≃ ⊕i≥0Fp[x]/(x

p) · γip(x) ≃ Fp〈x〉,

where the first one mapsγk(y) to γkp(x). Indeed, the first one is the usual splitting of the pd-filtration on a divided
power polynomial algebra, while the second one arises by thesplitting the conjugate filtration ondRFp/Fp[x] provided
byZ/p2-lifts of Frobenius. Iterating this procedure withFp replaced byFp[x]/(x

p) gives an isomorphism5 of algebras

Fp[x0, x1, x2, . . . ]/(x
p
0, x

p
1, x

p
2 . . . ) ≃ Fp〈x〉

defined viaxi 7→ (γp ◦ γp ◦ · · · ◦ γp)(x), where the composition isi-fold with γ0 being the identity. We do not know
a derived de Rham interpretation of this isomorphism.

5This isomorphism seems to be known to the experts, and was discovered by the author in conversation with Andrew Snowden.
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Remark 3.33. A theorem of Illusie [Ill72, Corollary VIII.2.2.8] shows that Hodge-completed derived de Rham co-
homology always agrees with Hodge-completed crystalline cohomology. Lemma 3.29 can therefore be regarded as
decompleted version of this theorem. The difference between the Hodge-completed and the non-completed theories
is, however, rather large: the latter is degenerate in characteristic0 by Corollary 2.5, while the former is not.

Question 3.34.In the presentation (3), the Hodge filtrationFil•H coincides with divided-power filtration on the right,
while in the presentation (2), the conjugate filtration is realised by settingFilconjn to be the firstn pieces of the direct
sum decomposition on the right. Thus, we haveFilconji ∩ FilipH ≃ grconji ≃ ⊕ip+p−1

j=ip grjH . What can be said about the
relative positions of the Hodge and conjugate filtrations ingeneral?

Remark 3.35. A slightly less computational proof of the main result of§3.29 can be given as follows; it comes at
the expense of more careful bookkeeping of homotopies, an issue we largely eschew below. Illusie’s theorem for the
Hodge-completed comparison isomorphism [Ill72, Corollary VIII.2.2.8] gives a canonical isomorphism

dRFp/Fp[x]/Fil
k
H ≃ Fp〈x〉/Fil

k
H

for all k. In particular, there is a canonical equivalence of exact triangles

FilkH/Fil
k+2j
H (dRFp/Fp[x])

//

≃

��

FilkH/Fil
k+j
H (dRFp/Fp[x])

δdRk,j //

≃

��

Filk+j
H /Filk+2j

H (dRFp/Fp[x])[1]

≃

��
FilkH/Fil

k+2j
H (Fp〈x〉) // FilkH/Fil

k+j
H (Fp〈x〉)

δcrysk,j // Filk+j
H /Filk+2j

H (Fp〈x〉)[1],

for all values ofk andj. Now we claim:

Claim 3.36. The mapδcrysjp,p is naturally equivalent to0, for all valuesj as a map of complexes ofFp[x]-modules.

Proof. Identifying terms explicitly, the claim amounts to showingthat the short exact sequence

1 // 〈γ(j+1)p(x)〉/〈γ(j+2)p(x)〉 //

≃

��

〈γjp(x)〉/〈γ(j+2)p(x)〉 //

≃

��

〈γjp(x)〉/〈γ(j+1)p(x)〉 //

≃

��

1

1 // Fp[x]/(x
p) · γj+1(p) // Filjp(Fp〈x〉)/Fil

(j+2)p(Fp〈x〉) // Fp[x]/(x
p) · γjp(x) // 1

is split in the category ofFp[x]-modules. This follows from fact thatγjp(x) ∈ Filjp(Fp〈x〉)/Fil
(j+2)p(Fp〈x〉) is

killed by xp (sincexp · γjp(x) = (j + 1) · p · γ(j+1)p(x) = 0), and hence defines a splitting of the surjection above in
the category ofFp[x]-modules. �

We remark that there is some ambiguity in the choice of splittings used above, but this will cancel itself out at the
end. We will use this information as follows. First, we partially totalise the (say canonical) bicomplex computing
dRFp/Fp[x], i.e., we totalise rows0 throughp − 1, rowsp through2p − 1, etc.; the result is still a bicomplex whose
associated single complex computesdRFp/Fp[x]. Moreover, the rows are of a very specific form: thej-th row is
naturally quasi-isomorphic to

Kj := FiljpH (dRFp/Fp[x])/Fil
(j+1)p
H (dRFp/Fp[x])[j],

(and hence a perfect complex ofFp[x]-modules), and the differential

Kj → Kj+1

is identified withδdRjp,p, which is itself isomorphic toδcrysjp,p, and hence equivalent to0 in a manner prescribed as above.
We leave it to the reader to check that any such bicomplex is canonically split, i.e., we have a canonical equivalence

⊕jKj[−j] ≃ |K•|.

Putting it all together, we obtain an equivalence

dRFp/Fp[x] ≃ ⊕j∈Z≥0
FiljpH /Fil

(j+1)p
H (dRFp/Fp[x]) ≃ ⊕j∈Z≥0

FiljpH /Fil
(j+1)p
H (RΓcrys((Fp/Fp[x]),Ocrys)) ≃ Fp〈x〉,

where the first map is non-canonical and constructed using the above splittings, the second map comes from Illusie’s
theorem, and the last map comes from explicit construction;the choices that go into constructing the last map are
exactly the ones that go into making the first map as well.
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Next, we show that pd-envelopes behave well under taking suitable tensor products; this is useful in passing from
the situation handled in Lemma 3.29 to complete intersections of higher codimension.

Lemma 3.37. Let A → B = A/I be a quotient map ofFp-algebras. Assume thatI is generated by a regular
sequencef1, . . . , fr of lengthr. Then one has

DA(I) ≃ A〈x1, . . . , xr〉/(x1 − f1, . . . , xr − fr) ≃ ⊗iA〈x〉/(x − fi) ≃ ⊗iDA(fi)

where all tensor products are derived.

Proof. The elementsfi define the Koszul presentation

∧2F → F → I → 0

whereF = ⊕r
i=1A · xi is a free module of rankr, the mapF → I is given byxi 7→ fi, and the map∧2F → F is the

usual Koszul differential determined byxi ∧ xj 7→ fjxi − fixj . Exactness properties ofΓn (see [BO78, Corollary
(A.5)]) give a presentation

⊕n
i=1(Γ

i
A(∧

2F )⊗A Γn−i
A (F )) → Γn

A(F ) → Γn
A(I) → 0.

This leads to an algebra presentation

Γ∗
A(I) ≃ Γ∗

A(F )/(〈fjxi − fixj〉i,j).

The pd-envelopeDA(I) is then obtained by the formula

DA(I) = Γ∗
A(I)/(x1 − f1, . . . , xr − fr) ≃ Γ∗

A(F )/(〈fjxi − fixj〉i,j , x1 − f1, . . . , xr − fr).

To simplify this, we observe that for each pairi, j and each positive integern, we have

γn(fjxi − fixj) ∈ (xi − fi, xj − fj) ⊂ (x1 − f1, . . . , xr − fr)

in the algebraΓ∗
A(F ). Indeed, this follows by expanding the left hand side modulothe ideal(xi − fi, xj − fj), and

using the equalityγn(xi) ·xnj = γn(xixj) = xni · γn(xj). Thus, we can simplify the preceding presentation ofDA(I)
to write

DA(I) = Γ∗
A(F )/(x1 − f1, . . . , xr − fr) ≃ A〈x1, . . . , xr〉/(x1 − f1, . . . , xr − fr).

Using the regularity of eachfi, the same reasoning also shows that

DA(fi) ≃ A〈xi〉/(xi − fi).

It remains to check that

⊗r
i=1A〈xi〉/(xi − fi) ≃ A〈x1, . . . , xr〉/(x1 − f1, . . . , xr − fr).

The natural map from the left hand side to the right hand side naturally realises the latter asπ0 of the former. Hence,
it suffices to check that the left hand side is discrete. The regularity of fi implies the regularity ofxi − fi ∈ A〈xi〉.
Hence, we have a chain of isomorphisms (with derived tensor products)

A〈xi〉/(xi − fi) = A⊗Fp[t]

(
Fp[t]〈xi〉

xi−t
→ Fp[t]〈xi〉

)
via t 7→ fi

= A⊗Fp[t] Fp〈t〉

= A⊗Fp[t]

(
⊕j∈Z≥0

Fp[t]/(t
p) · γjp(t)

)

= ⊕j∈Z≥0
A/(fi)

p · γjp(fi),

where the last equality uses the regularity offp
i ∈ A. In particular, each ringA〈xi〉/(xi − fi) is a free module over

A/(fp
i ). The desired discreteness now follows by commuting the tensor product with direct sums, and using that

fp
1 , . . . , f

p
r is a regular sequence sincef1, . . . , fr is so. �

We need some some base change properties of crystalline cohomology. First, we deal with pd-envelopes.

Lemma 3.38. Let A → B = A/I be a quotient map of flatZ/pn-algebras. Assume thatI is generated by a
regular sequence. Then the pd-envelopeDA(I) (compatible with divided powers onp) isZ/pn-flat, and its formation
commutes with reduction modulop, i.e.,DA(I)⊗Z/pn Fp ≃ DA/p(I + (p)/(p)).
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Proof. Let I = (f1, . . . , fr) be generated by the displayed regular sequence. The proof ofLemma 3.37 shows that

DA(I) ≃ A〈x1, . . . , xr〉/(x1 − f1, . . . , xr − fr).

Thus, to show flatness overZ/pn, we may reduce to the caser = 1, i.e.,I = (f) for some regular elementf . We need

to check thatA〈x〉/(x− f) isZ/pn-flat. The regularity off and theZ/pn-flatness ofA imply that
(
A〈x〉

x−f
→ A〈x〉

)

is aZ/pn-flat resolution ofDA(I). Since anyZ/pn-module with a finite flat resolution is flat,DA(I) is alsoZ/pn-flat.
For base change, it now suffices to show that iff ∈ A is regular, then so is its image inA/p, i.e., the sequence

0 → A/p
f
→ A/p→ (A/f)/p→ 0

is exact. SinceA is Z/pn-flat, the regularity off shows thatA/f has finite flat dimension overZ/pn, and hence is
flat as above. The desired exactness then follows from the vanishing ofTorZ/pn

1 (A/f,Fp). �

Next, we show that the formation of crystalline cohomology often commutes with reduction modulop.

Lemma 3.39. LetA → B be an lci map of flatZ/pn-algebras. Then the formation ofRΓ((B/A)crys,O) commutes
with −⊗Z/pn Fp.

Proof. Choose a factorisationA → F → B with A → F a polynomial algebra, andF → B an lci quotient by
a regular sequence; the reduction modulop of this factorisation defines a similar presentation ofB/p by freeA/p-
algebras. Then by Berthelot’s theorem [Ber74, Theorem IV.2.3.2],RΓ((B/A)crys,O) is computed by the de Rham
complexΩ•

F/A ⊗A DA(I), and similarly modulop. By Lemma 3.38 and the freeness overA of eachΩi
F/A, the

formation of this complex commutes with reduction modulop, so the claim follows. �

The preceding few lemmas and Lemma 3.29 combine to show more instances of Theorem 3.27.

Corollary 3.40. LetA→ B = A/I be a quotient map of flatZ/pn-algebras. Assume thatI is generated by a regular
sequence. Then the mapCompB/A from Proposition 3.25 is an isomorphism.

Proof. We want to show thatdRB/A → RΓ((B/A)crys,O) is an isomorphism. Since the formation of both sides
commutes with derived base change (by Proposition 2.7 and Lemma 3.38), we may reduce (by devissage) to the case
thatA andB areFp-algebras, andI = (f1, . . . , fr) is generated by a regular sequence. The target is computed as
DA(I) by Berthelot’s theorem [Ber74, Theorem IV.2.3.2]. Proposition 2.7 and Lemma 3.37 then immediately reduce
us to the caser = 1, i.e. I = (f) for some regular elementf ∈ A. In this case, the target isDA(f) ≃ A〈x〉/(x − f).
To compute the source, observe that we have a commutative square

Fp[t]
t7→f //

t7→0

��

A

��
Fp

// A/f.

This square can be checked to be a (derived) pushout using theresolution ofFp given by multiplication byt onFp[t].
By base change in derived de Rham cohomology and Lemma 3.29, we obtain

dRB/A ≃ Fp〈t〉 ⊗Fp[t] A ≃
(
Fp[t]〈x〉

x−t
→ Fp[t]〈x〉

)
⊗Fp[t] A ≃

(
A〈x〉

x−f
→ A〈x〉

)
≃ A〈x〉/(x− f) ≃ DA(f),

as desired; here the second-to-last isomorphism comes fromthe regularity ofx − f ∈ A〈x〉 which, in turn, comes
from the regularity off ∈ A. �

The next lemma proves a Tor-independence result for lci quotients, and is here for psychological comfort.

Lemma 3.41. Let A → B = A/I be a quotient map ofFp-algebras. Assume thatI is generated by a regular
sequence. ThenB(1) is discrete, i.e.,Frob∗A andB are Tor-independent overA.

Proof. The assumption implies thatB ≃ ⊗iA/(fi); here the tensor product is derived and relative toA, andI =
(f1, . . . , fr) with the fi’s spanning a regular sequence. The desired Tor-independence follows from the following
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sequence of canonical isomorphisms:

Frob∗A⊗A B =
(
Frob∗A⊗A A/(f1)

)
⊗Frob∗A · · · ⊗Frob∗A

(
Frob∗A⊗A A/(fr)

)

= Frob∗(A/f
p
1 )⊗Frob∗A · · · ⊗Frob∗A Frob∗(A/f

p
r )

= Frob∗
(
(A/(fp

1 )⊗A · · · ⊗A A/(f
p
r )
)

= Frob∗
(
A/(fp

1 , . . . , f
p
r )
)
.

Here all tensor products are derived, and the last equality uses the regularity of the sequence(fp
1 , . . . , f

p
r ). �

Next, we discuss the conjugate filtration on pd-envelopes ofideals generated by regular sequences; this is pure
algebra, but will correspond to the conjugate filtration on derived de Rham cohomology once Theorem 3.27 is shown.

Lemma 3.42. Let A → B = A/I be a quotient map ofFp-algebras. Assume thatI is generated by a regular
sequence. ThenDA(I) admits a natural increasing bounded below (at0) separated exhaustive filtrationFilconj• by
B(1)-submodules, with graded pieces given by

grconji (DA(I)) ≃ Γi
B(1)(π0(I

[p] ⊗A B
(1))) ≃ Frob∗A

(
Γi
B(I/I

2)
)
,

whereI [p] = (fp
1 , . . . , f

p
r ) denotes the Frobenius-twisted ideal.

Note that the natural mapA → DA(I) sendsI [p] to 0 asfp = p · γp(f) = 0 for anyf ∈ I, soDA(I) may be
viewed as aB(1)-algebra. By Lemma 3.41, the algebraB(1) is also discrete, and theB(1)-moduleπ0(I [p] ⊗AB

(1)) is
a locally free module of rankr, wherer is the length of a regular sequence generatingI. Moreover, thisB(1)-module
can be identified with the pushout ofI/I2 alongFrobA : B → B(1), which explains the last equality above.

Proof. The filtration can be defined by settingFilconjn (DA(I)) to be theB(1)-submodule ofDA(I) generated by
γkp(f) for f ∈ I andk ≤ n. To compute this filtration, observe that ifI = (f) with f ∈ A regular, then, as in the
proof of Lemma 3.37, one has

DA(I) ≃ ⊕i∈Z≥0
A/(fp) · γip(x).

Under this isomorphism, one hasFilconjn (DA(I)) ≃ ⊕n
i=0A/(f

p) · γnp(f), i.e., the conjugate filtration coincides with
the evident filtration by the number of factors on the direct sum decomposition above. The claim about associated
graded pieces is clear in this case well. The general case follows from this special case and Lemma 3.37. �

Remark 3.43. If A → B = A/I is a quotient by an idealI generated by a regular sequence, then one hasLB/A ≃

I/I2[1], andLB(1)/A ≃ π0(I
[p] ⊗A B(1))[1] by Lemma 3.41. Thus, the graded pieces of the conjugate filtration

appearing in Lemma 3.42 may be rewritten as

grconji (DA(I)) ≃ Γi
B(1)(π0(I

[p] ⊗A B
(1))) ≃ ∧iLB(1)/A[−i],

which brings it much closer to the derived de Rham theory by Proposition 3.5. In [Bhab], we will define a notion of a
“derived pd-envelope”LDA(I) of an arbitrary idealI ⊂ A in such a way that the analogue of the previous statement
is true without the assumption thatI is generated by a regular sequence.

The conjugate filtration introduced in Lemma 3.42 respects the Gauss-Manin connection if the base comes equipped
with derivations. The following lemma identifies the induced connection on the graded pieces.

Lemma 3.44. Let A → B = A/I be a quotient map ofFp-algebras. Assume thatI is generated by a regular
sequene. LetR → A be another map ofFp-algebras. Then the conjugate filtrationFilconj• from Lemma 3.42 on
DA(I) is compatible with the naturalR-linear connectionDA(I) → DA(I) ⊗A Ω1

A/R. The induced connection on

grconjn (DA(I)) ≃ Frob∗AΓ
n
B(I/I

2) coincides with the Frobenius descent connection.

Proof. The first claim follows directly from the description of the conjugate filtration given in the proof of Lemma
3.42. For the second part, we first explain what the Frobeniusdescent connection is. The natural Frobenii onA andR
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define a diagram of simplicial commutative rings

R
f //

FrobR

��

A
g //

FrobR

��

B

FrobR

��
R

a //

f

""❋
❋

❋

❋

❋

❋

❋

❋

❋

❋

Frob∗RA
b //

Frobf

��

Frob∗RB

c

��
A

d //

g

%%▲▲
▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

Frob∗AB

Frobg

��
B.

All squares here are cartesian. Now the freeFrob∗AB-modulegrconjn (DA(I)) is identified with∧nLd[−n] by Remark
3.43. In particular, as anA-module, this module is the pullback alongFrobf of theFrob∗RA-module∧nLb[−n],
viewed as anFrob∗RA-module via restriction of scalars alongb. For anyFrob∗RA-moduleM , the pullbackFrob∗fM
acquires a connection relative toR, which is called the Frobenius descent connection. We leaveit to the reader to check
that this Frobenius descent connection coincides with the standard one on (conjugate graded pieces of)DA(I). �

The de Rham cohomology of a module equipped with a connectioncoming from Frobenius descent takes a par-
ticularly nice form, and this leads to a tractable description of the de Rham complex associated to the Gauss-Manin
connection acting on the conjugate filtration.

Lemma 3.45. LetR, A andB be as in Lemma 3.44. If the mapR → A exhibitsA as a freeR-algebra, then one has
an identification of de Rham complexes

dRA/R(gr
conj
n (DA(I))) ≃ dRA/R ⊗Frob∗

RA Frob∗R
(
Γn
B(I/I

2)
)
,

where the second factor on the right hand side is the base change ofΓn
B(I/I

2), viewed as anA-module, along the
mapFrobR : A→ Frob∗RA.

Proof. This lemma follows from Lemma 3.44 and Lemma 3.24. �

We now have enough tools to finish proving Theorem 3.27.

Proof of Theorem 3.27.LetR → A → B be a composite map of flatZ/pn-algebras, withR → A a freeR-algebra,
andA → B = A/I a quotient map withI ⊂ A an ideal generated by a regular sequence. We want to show that
CompB/R : dRB/R → RΓ((B/R)crys,O) is an isomorphism. Since the formation of either side commutes with base
change (by Proposition 2.7 and Lemma 3.39), we may reduce (bydevissage) to the casen = 1, i.e., we may assume
that all algebras in sight areFp-algebras. By Proposition 3.22,dRB/R admits an increasing bounded below separated
exhaustive filtration with graded pieces:

Ω•
A/R(gr

conj
n (dRB/A)) ≃ dRA/R ⊗Frob∗

RA Frob∗R
(
∧n LB/A[−n]

)
. (4)

Transitivity for crystalline cohomology together with Lemma 3.45 show thatRΓ((B/R)crys,O) admits an increasing
bounded below separated exhaustive filtration with terms given by

Ω•
A/R(gr

conj
n (DA(I))) ≃ dRA/R ⊗Frob∗

RA Frob∗R
(
Γn
B(I/I

2)
)
≃ dRA/R ⊗Frob∗

RA Frob∗R
(
∧n LB/A[−n]

)
, (5)

where the last equality uses Remark 3.43. We leave it to the reader to check thatCompB/A respects both these
filtrations, and induces the identity isomorphism between (4) and (5). �

Remark 3.46. The identification of crystalline and derived de Rham cohomology provided in Theorem 3.27 answers
[Ill72, Question VIII.2.2.8.2] in the case ofZ/pn-algebras. The case of characteristic0 has a negative answer by§2.5,
and hence this seems like the best possible answer.

A consequence of Theorem 3.27 and the Frobenius action on crystalline cohomology is the Frobenius action on
dRA/(Z/pn) for flat lci Z/pn-algebrasA. In fact, this is a completely general phenomenon:

Proposition 3.47. LetA be aZ/pn-algebra. ThendRA/(Z/pn) has a canonical Frobenius action commuting with the
Frobenius onRΓ((B/A)crys,Ocrys) underCompB/A.
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Proof. Let P• → A be a free(Z/pn)-algebra resolution ofA. ThenΩ•
Pm/(Z/pn) has a natural Frobenius action

coming from the isomorphism ofΩ•
Pm/(Z/pn) with the crystalline cohomology ofZ/pm → Pm/p (compatible with

divided powers onp). Since the Frobenius action on crystalline cohomology is functorial, Frobenius also acts on the
bicomplexΩ•

P•/(Z/pn), and hence ondRA/(Z/pn). The compatibility withCompB/A is clear from construction. �

Remark 3.48. It seems possible to use Mazur’s theorem (or, rather, Ogus’sgeneralization of it) to explicitly charac-
terise the “image” of the Frobenius map defined above: it is the homotopy colimit overm ∈ ∆opp of the complexes
LηΩ•

Pm/(Z/pn), whereLη denotes the cogauge used in Ogus’s theorem. However, this does not seem very useful as
derived de Rham cohomology tends to be unbounded outside thesmooth case.

4. SOME SIMPLICIAL ALGEBRA

The purpose of this section is to record some basic notions insimplicial algebra. In§4.1, we review the usual
model structures on simplicial sets, abelian groups, and commutative rings that are used in practice to defined derived
functors. In§4.2, we extend these ideas to simplicial commutative monoids. This material will be used in§5 to set up
some basic formalism for derived logarithmic geometry.

4.1. Review of some standard model structures.We simply collect (with references) some of Quillen’s results from
[Qui67]. All model structures we consider areclosed, so we will not use this adjective. We refer the reader to the end
of §1.5 for our conventions concerning simplicial sets, simplicial rings, etc.

Simplicial sets and abelian groups.The categorysSet is always equipped with the model structure where weak
equivalences are the usual ones (defined by passage to geometric realisations), and fibrations are Kan fibrations.
Similarly, we equipsAb with the model structure where weak equivalences (resp. fibrations) are the maps which
induce weak equivalences (resp. fibrations) of underlying simplicial sets. In particular,ForgetsAb

sSet is a right Quillen
functor with left adjoint given byFreesSetsAb . A good reference for these model structures is [Qui67]. We follow here
the convention that(| − |, Sing(−)) denotes the usual adjunction betweensSet and topological spaces.

Simplicial commutative rings.The categoryAlg has finite limits, all filtered colimits, and enough projectives (given
by retracts of free algebrasFreeSetAlg(X) ≃ Z[X ], since effective epimorphisms are just surjective maps). Hence, by
Quillen’s theorem [Qui67, Chapter 2,§4, Theorem 4], we can equip the categorysAlg with a model structure where
fibrations (resp. weak equivalences) are those mapsA• → B• such that for every projectiveP ∈ Alg, the induced
mapHomAlg(P,A•) → HomAlg(P,B•) is a fibration (resp. weak equivalence). Note that a projectiveP is a retract
of a free algebraFreeSetAlg(X) for some setX , and that for a setX , we have

HomAlg(Free
Set
Alg(X), A) ≃ HomSet(X,A) ≃ AX .

Thus, a fibration (resp. weak equivalence)A• → B• in sAlg is precisely a map such that for any setX , the map
AX

• → BX
• of simplicial sets is a fibration (resp. weak equivalence). In particular,FreesSetsAlg is a left Quillen functor

with right adjointForgetsAlg
sSet , and similarly for the pair(FreesAb

sAlg,Forget
sAlg
sSet ). In fact, we have:

Proposition 4.1. A mapA• → B• in sAlg is a fibration (resp. weak equivalence) if and only if it is so as a map of
simplicial sets.

Proof. For fibrations, this follows because an arbitrary product offibrations (in any model category) is always a
fibration. For weak equivalences, note that the simplicial set underlying any object ofsAlg is automatically Kan
fibrant as it is a simplicial abelian group (see [Qui67, Chapter 2,§3, Corollary to Proposition 1, page 3.8]), and hence
fibrant-cofibrant since all simplicial sets are cofibrant (see [Qui67, Chapter 2,§3, page 3.15, Proposition 2]). Thus, a
mapA• → B• in sAlg that induces a weak equivalence on underlying simplicial sets actually induces a homotopy
equivalence on underlying simplicial sets. The claim now follows from the fact that homotopy equivalences are closed
under arbitrary products, and the fact thatForgetAlg

Set commutes with products. �
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4.2. Model structures on simplicial commutative monoids.Quillen’s theorem used in§4.1 also leads to a model
structure onsMon, and we summarise the result as:

Proposition 4.2. The categorysMon admits a model structure with a mapf : M• → N• being a (trivial) fibration if
and only if it is so as a map insSet.

Proof. The categoryMon has finite limits, all filtered colimits, and enough projectives (given by retracts of free
monoidsFreeSetMon(X) ≃ N(X) := ⊕x∈XN · x, since effective epimorphisms are just surjective maps). By Quillen’s
theorem [Qui67, Chapter 2,§4, Theorem 4], there is a model structure onsMon with a mapf : M• → N• being a
(trivial) fibration if and only if the associated mapHom(N(X),M•) → Hom(N(X), N•) of simplicial sets is a trivial
fibration for any setX (as any projective is a retract of one of the formN(X)). By adjunction, this last map may be
identified with the map(M•)

X → (N•)
X . Hence, it suffices to show that a mapM• → N• in sSet is a (trivial)

fibration if and only if(M•)
X → (N•)

X is so for any setX . This follows from axiom SM7of [Qui67, Chapter 2,§2,
Definition 2] (applied withA = ∅) and [Qui67, Chapter 2,§3, Theorem 3]. �

There is a forgetful functorForgetAb
Mon : Ab → Mon which is a right adjoint with left adjoint given byM →Mgrp,

the group completion functor, denoted(−)grp in the sequel. These functors interact well with the model structures:

Proposition 4.3(Olsson). The adjoint pair((−)grp,ForgetsAb
sMon) is a Quillen adjunction. Moreover, ifP• → M is

an equivalence insMon withM with discrete, thenP grp
• →Mgrp is also an equivalence.

Proof. The first part is clear as (trivial) fibrations insMon andsAb are defined by passing to underlying simplicial
sets; the second part is [Ols05, Theorem A.5]. �

Regarding a commutative ring as a commutative monoid under multiplication defines a forgetful functorForgetAlg
Mon :

Alg → Mon with left adjointFreeMon
Alg , and similar simplicial functors. As in the case of abelian groups, one has:

Proposition 4.4. The adjoint pair(FreesMon
sAlg ,Forget

sAlg
sMon) is a Quillen adjunction. Moreover,FreesMon

sAlg preserves all
weak equivalences.

Proof. The first part is clear as (trivial) fibrations in bothsMon andsAlg are defined by passing tosSet. For the
second part, note that ifM• ∈ sMon, then

ForgetsAlg
sAb ◦ FreesMon

sAlg (M•) ≃ FreesSetsAb ◦ ForgetsMon
sSet (M•) ≃ ZM•,

i.e., the abelian group underlying the free algebra on a monoid M is the same as the free abelian group on the set
underlyingM . Now if f : M• → N• is a weak equivalence insMon, then the mapf is also a weak equivalence
when regarded as a map of simplicial sets. Ken Brown’s lemma (which ensures that a left Quillen functor preserves
all weak equivalences between cofibrant objects) and the cofibrancy of all simplicial sets then show that the induced
mapFreesSetsAb (f) = Zf : ZM• → ZN• is a weak equivalence of simplicial abelian groups (and hence underlying
simplicial sets). The claim now follows from the description of weak equivalences insAlg. �

The next few lemmas prove easy properties about simplicial commutative monoids. First, we relate a simplicial
monoid to its singular complex.

Lemma 4.5. For any objectM• ∈ sMon, the singular complexSing(|M•|) acquires the structure of a simplicial
commutative monoid. The natural mapM• → Sing(|M•|) is a weak equivalence of simplicial commutative monoids.

Proof. The geometric realisation functor| − | commutes with finite products of simplicial sets, so the multiplication
mapM• × M• → M• defines the structure of commutative monoid on|M•|. The singular complex functor, by
virtue of being a right adjoint, also commutes with finite products, soSing(|M•|) becomes a simplicial commutative
monoid. It is clear that the mapM• → Sing(|M•|) is a map of simplicial commutative monoids. Moreover, the map
|M•| → |Sing(|M•|)| is a weak equivalence (which is true for any simplicial set),so the last claim follows. �

Next, we relate a simplicial monoid to its set of connected components.

Lemma 4.6. LetM• ∈ sMon. Thenπ0(M•) (computed on the underlying simplicial set) has the naturalstructure
of a commutative monoid. The mapM• → π0(M•) is the universal map fromM• to a simplically constant object of
sMon. Moreover,M• is discrete if and only ifM• → π0(M•) is a weak equivalence.
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Proof. The multiplication mapM• × M• → M• defines the multiplication onπ0(M•) asπ0(−) commutes with
products of simplicial sets. The universal property comes directly from that ofπ0 of any simplicial set. The last claim
is true for any simplicial set. �

Recall that an object insMon or sAlg is calleddiscreteif the underlying simplicial set has a discrete geometric
realization. We show next thatFreesMon

sAlg preserves and reflects discreteness:

Proposition 4.7. An objectM• ∈ sMon is discrete if and only ifFreesMon
sAlg (M•) is discrete.

Proof. The forward direction follows from Proposition 4.4 appliedto the mapM• → π0(M•) using Lemma 4.6.
For the converse, note that|M•| is a topological space with an abelian fundamental group (sinceM• is commu-
tative monoid, the space|M•| is a commutativeH-space) for any base point, and that the singular chain complex
ZSing(|M•|) of |M•| is equivalent to theZM• ≃ ForgetsAlg

sAb ◦FreesMon
sAlg (M•) by Lemma 4.5. If the latter is discrete,

then each connected component of|M•| has no homology. Since the fundamental group is abelian, each component
is therefore contractible (by Hurewicz). The claim now follows. �

In preparation for discussing flat morphisms of log schemes,we make the following definition:

Definition 4.8. A maph :M → N of monoids isflat if for all mapsM →M ′, the natural mapM ′⊔h
MN →M ′⊔MN

is an equivalence or, equivalently, ifM ′⊔h
M N is discrete. HereM ′ ⊔h

M N is thehomotopy-pushoutofM → N along
M →M ′, defined by taking a cofibrant replacement forM →M ′ and applying the naive pushout.

The definition given above is a general definition in model category, and specialises to the case of flatness in the
case ofsAlg, which explains the nomenclature. Our main observation is:

Proposition 4.9. A maph :M → N in Mon is flat if FreeMon
Alg (M) → FreeMon

Alg (N) is flat inAlg.

Proof. By Proposition 4.4, the left derived functorLFreesMon
sAlg coincides (up to equivalence) with the naive functor

FreesMon
sAlg . Hence, since the former preserves homotopy-colimits, we can write

FreesMon
sAlg (N ⊔h

M M ′) ≃ FreeMon
Alg (N)⊗L

FreeMon
Alg (M) Free

Mon
Alg (M ′).

By assumption, the right hand side is discrete, and hence so is the left hand side. Proposition 4.7 then shows that
N ⊔h

M M ′ is discrete, as desired. �

Example 4.10. An integral homomorphism of integral monoids is flat by [Kat89, Proposition 4.1], and can therefore
be used to compute homotopy pushouts.

5. THE CATEGORYLogAlgpre OF PRELOG RINGS AND ITS MODEL STRUCTURE

Our goal in this section is to define the basic object of logarithmic algebraic geometry: a prelog ring. We define this
next, and introduce a model structure on simplicial prelog rings immediately after; this model structure will replace
the usual model structure onsAlg in logarithmic version of the cotangent complex and the derived de Rham complex.

Definition 5.1. LetLogAlgpre be the category of mapsα :M → A with M a monoid,A an algebra, andα a monoid
homomorphism whereA is regarded as a monoid via multiplication; objects of this category are often calledprelog
rings. For an objectP ∈ LogAlgpre, we often writePAlg andPMon for the rings and monoids appearing inP . Given
a ringA, we often useA to denote the prelog ringα : 0 → A.

Remark 5.2. As the notation suggests, a prelog ring is a weaker version ofthe notion of a log ring. More precisely, a
prelog ringα : M → A is called alog ring if α−1(A∗) → A∗ is an isomorphism, at least after sheafification for some
topology (typically étale) onSpec(A). It turns out that it is much easier to develop the basic theory of the cotangent
complex (see [Ols05,§8]) with prelog rings, so we focus on these, and only discuss genuine log rings occasionally.

The associationP 7→ (PMon, PAlg) defines forgetful functors

ForgetLogAlgpre

Set×Set : LogAlgpre → Set× Set and ForgetLogAlgpre

Mon×Alg : LogAlgpre → Mon×Alg.

Both functorsForgetLogAlgpre

Set×Set andForgetLogAlgpre

Mon×Alg admit left adjoints defined by

FreeSet×Set
LogAlgpre(X,Y ) := (N(X) → FreeSetAlg(X ⊔ Y ) ≃ FreeMon

Alg (N(X))⊗Z FreeSetAlg(Y ))
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and
FreeMon×Alg

LogAlgpre(N,B) := (N → FreeMon
Alg (N)⊗Z B).

HereN(X) denotes the free monoid on a setX , i.e., adirect sumof copies ofN indexed byX . Using these functors,
one can construct a model structure onsLogAlgpre:

Proposition 5.3. The categorysLogAlgpre admits a simplicial model structure with (trivial) fibrations being those
mapsP → Q which induce a (trivial) fibration after application ofForgetsLogAlgpre

sSet×sSet . Under this model structure, both

ForgetsLogAlgpre

sSet×sSet andForgetsLogAlgpre

sMon×sAlg are right Quillen functors with left adjointsFreesSet×sSet
LogAlgpre andFreesMon×sAlg

sLogAlgpre

respectively.

Proof. The categoryLogAlgpre has all small limits and colimits; the formation of limits commutes with both for-
getful functors mentioned above, while the formation of colimits commutes withForgetLogAlgpre

Mon×Alg . Since effective
epimorphisms inLogAlgpre are exactly the maps which induce surjections on underlyingsets, one can check (using
adjunction) that the objectsFreeSet×Set

LogAlgpre(X,Y ) are projective, and that

FreeSet×Set
LogAlgpre(1, 1) ≃ FreeSet×Set

LogAlgpre((1, ∅) ⊔ (∅, 1)) ≃ FreeSet×Set
LogAlgpre(1, ∅) ⊔ FreeSet×Set

LogAlgpre(∅, 1)

generates the categoryLogAlgpre, i.e., every object admits an effective epimorphism from a coproduct of copies of
FreeSet×Set

LogAlgpre(1, 1). Quillen’s theorem [Qui67, Chapter 2,§4, Theorem 4] then shows thatsLogAlgpre has a simplicial

model structure with (trivial) fibrations being defined by applying ForgetsLogAlgpre

sSet×sSet ; note thatP• → Q• is a (trivial)
fibration if and only ifP•,Alg → Q•,Alg andP•,Mon → Q•,Mon are (trivial) fibrations insAlg andsMon respectively,
so we have checked all claims. �

Remark 5.4. The cofibrations insLogAlgpre can be described explicitly as follows (see [Qui67, Chapter2, §4, page
4.11, Remark 4]): a free cofibration is a map(M → A) → P• with eachPn ≃ FreeSet×Set

LogAlgpre
(M→A)/

(X,Y ) for suitable

setsX andY with the additional property that all degeneracies are induced fromSet× Set, and a general cofibration
is a retract of a free one.

Proposition 5.3 implies that the formation of homotopy-limits commutes with the right derived functors of the
forgetful functorForgetsLogAlgpre

sMon×sAlg; it turns out that the same is true for homotopy-colimits:

Proposition 5.5. The functorForgetsLogAlgpre

sMon×sAlg is a left Quillen functor.

Proof. We first observe thatForgetLogAlgpre

Mon×Alg is a left adjoint functor with right adjointNilMon×Alg
LogAlgpre given by(N,B) 7→

(N ×B → B). The resulting simplicial functorNilsMon×sAlg
sLogAlgpre preserves (trivial) fibrations since (trivial) fibrations are

defined insMon andsAlg by passing tosSet, and similarly forsLogAlgpre. Hence,NilsMon×sAlg
sLogAlgpre is a right Quillen

functor with left Quillen adjoint given byForgetsLogAlgpre

sMon×sAlg. �

Next, we define the prelog avatar of the canonical free resolution:

Definition 5.6. For a map(M → A) → (N → B) in LogAlgpre, and letP(M→A)(N → B) be the simplicial

object insLogAlgpre(M→A)/ built using the adjunction(FreeSet×Set
LogAlgpre

(M→A)/

,Forget
LogAlgpre

(M→A)/

Set×Set ) applied to the object

(N → B); the counit defines an augmentationP(M→A)(N → B) → (N → B), and we call this thecanonical free
resolutionof the(M → A)-algebra(N → B). In general, any trivial fibrationP• → (N → B) with P• cofibrant in
sLogAlgpre(M→A)/ will be called aprojective resolutionof (N → B) as an(M → A)-algebra; the same conventions
apply for a morphism in an arbitrary model category.

One can check that the canonical free resolution is indeed a projective resolution, and any two projective resolutions
are homotopy equivalent (see [Qui67, Chapter 1,§1, Lemma 7]). Moreover, there is a tight connection between
projective resolutions of prelog rings and those of the underlying monoids and algebras:

Proposition 5.7. Given a map(M → A) → (N → B) in LogAlgpre together with a projective resolutionP• →
(N → B), the mapsP•,Mon → N andP•,Alg → B are projective resolutions insMon andsAlg respectively.

Proof. This follows from the fact thatForgetsLogAlgpre

sMon×sAlg preserves trivial fibrations (since it is a right Quillen functor
by Proposition 5.3) and cofibrantions (since it is a left Quillen functor by Proposition 5.5). �
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6. LOGARITHMIC DERIVED DE RHAM COHOMOLOGY

Our goal in this section is to use the formalism of§5 to define the logarithmic version of Illusie’s derived de Rham
cohomology. First, we recall the key non-derived players:

Definition 6.1. Let f : (M → A) → (N → B) be a map inLogAlgpre. TheB-module oflogarithmic Kahler
differentialsis defined as

Ω1
f := Ω1

(N→B)/(M→A) :=
(
Ω1

B/A ⊕
(
cok(M → N)grp ⊗Z B

))
/
(
(dβ(n), 0)− (0, n⊗ β(n))

)

whereβ : N → B is the structure map; see [Kat89,§1.7]. The monoid mapd log : N → Ω1
f is defined by

n 7→ d log(n) := (0, n⊗ 1). The derivationB → Ω1
B/A defines by composition anA-linear derivationB → Ω1

f , and
we useΩ•

f to denote the corresponding complex, called thelogarithmic de Rham complex.

Note thatΩ•
f comes equipped with a multiplication, and a descending Hodge filtration. Essentially by construction,

there is a natural multiplicative filtered mapΩ•
B/A → Ω•

f . Moreover, an easy computation shows thatd log(n) is
closed, and henced log lifts to a mapN → Ω•

f [1], also denotedd log.

Example 6.2. Let (M → A) → T (X,Y ) := FreeSet×Set
LogAlgpre

(M→A)/

(X,Y ) be a free(M → A)-algebra. Then we have

Ω1
T (X,Y )/(M→A) ≃ FreeSetAlgA/

(X ⊔ Y )⊗Z (⊕x∈XZd log(x) ⊕y∈Y Zdy)

whered log(x) anddy are formal symbols; see also [Ols05,§8.4].

The logarithmic cotangent complex is defined by mimicking the construction of the usual cotangent complex using
the canonical free resolutions inLogAlgpre instead ofAlg. More precisely,

Definition 6.3 (Gabber). Let f : (M → A) → (N → B) be a map of prelog rings, and letP• → (N → B) be
the canonical free resolution off in sLogAlgpre. For eachn ∈ ∆, the prelog(M → A)-algebraPn has a module
Ω1

Pn/(M→A) of Kahler differentials as defined in§6.1, and asn varies, these fit together to define a simplicialP•,Alg-

moduleΩ1
P•/(M→A). The log cotangent complex off is defined to be the correspondingB-module, i.e., we have

Lf := Ω1
P•/(M→A) ⊗P•,Alg

B.

The mapsd log : Pn,Mon → Ω1
Pn/(M→A) for eachPn fit together to give a mapd log : P•,Mon → Lf , and hence a

mapd log : N ≃ |P•,Mon| → Lf in the homotopy category ofsMon.

Definition 6.3 generalises in the obvious manner to all maps in sLogAlgpre, and the complexLf can be calculated
using any projective resolution as these are all homotopy equivalent.

Remark 6.4. Gabber’s cotangent complex complexLf from Definition 6.3 is denotedLG
f in [Ols05,§8]. The same

paper [Ols05] also introduces a different version of the cotangent complex for a morphism of fine log schemes using
Olsson’s stack-theoretic reformulation of the logarithmic theory [Ols03]. The resulting two complexes agree for
integral morphisms ([Ols05, Corollary 8.29]) and always insmall cohomological degrees ([Ols05, Theorem 8.27]);
a key difference is that Gabber’s complex is not necessarilydiscrete for log smooth maps, while Olsson’s is. We
will consistently use Gabber’s complex for two reasons: (a)Gabber’s theory has better functoriality properties (like
the transitivity triangle [Ols05, Theorem 8.14]), (b) Gabber’s theory applies to arbitrary morphisms, while Olsson’s
theory imposes strong finiteness conditions that will be unavailable to us.

We have the following compatibility betweenLfAlg
andLf .

Proposition 6.5. Let f : (M → A) → (N → B) be a map of prelog rings. There is a natural mapLfAlg
→ Lf that

is an isomorphism whenM = N .

Proof. Let P• → (N → B) be a projective(M → A)-algebra resolution. The functorForgetsLogAlgpre

sMon×sAlg preserves
projective resolutions by Proposition 5.5, so the natural map from usual Kahler differentials to the logarithmic version
defines the desired mapLfAlg

→ Lf . WhenM = N , a projectiveA-algebra resolutionQ• → B defines a projective
(M → A)-algebra resolution(M → Q•) → (M → B) by Remark 5.4. One then checks directly thatΩ1

Q•/A
≃

Ω1
(M→Q•)/(M→A), proving the second claim (or one may use [Ols05, Lemma 8.17]). �
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The usual cotangent complex can be characterised by its functor of points: for a mapf : A → B of commutative
rings,Hom(Lf ,M) classifiesA-linear derivationsB →M for any complexM ofB-modules. The next remark gives
a similar description in the logarithmic context, and was discovered in conversation with Lurie.

Remark 6.6(Lurie). Fix a mapf : (M → A) → (N → B) in sLogAlgpre. Then the construction ofLf given above
can be characterised by an intrinsic description of its functor of points, analogous to the picture for the usual cotangent
complex, as follows. For any simplicialB-moduleP , there is a natural equivalence

MapsModB
(Lf , P ) ≃ Sect(M→A)(N ⊕ P → B ⊕ P,N → B) =: Der(M→A)((N → B), P ). (6)

Let us explain briefly what this means. The term on the left is the space of mapsLf → P in the simplicial
model categorysModB given the usual (projective) model structure; the resulting space is homotopy equivalent to
τ≤0RHomB(Lf , P ). The middle term is the space of sections of the projection map

(N ⊕ P → B ⊕ P ) → (N → B)

in the simplicial model categorysLogAlgpre(M→A)/. HereB ⊕ P is the trivial square-zero extension ofB by P ,
N ⊕ P is the trivial square-zero extension ofN byP in Mon with the binary operation given by(n1, p1) · (n2, p2) =
(n1n2, p1 + p2), and the structure morphismN ⊕ P → B ⊕ P is defined by

(n, p) 7→ (α(n), 0) · (1, p) = (α(n), α(n) · p)

whereα : N → B is the structure map. A section of the projection map is explicitly computed by first replacing
(N → B) by a cofibrant(M → A)-algebra, and then producing a section over the pullback; theB-module structure
on Sect(M→A)(N ⊕ P → B ⊕ P,N → P ) is induced by that ofP . The universal(M → A)-linear section of
(N ⊕ Lf → B ⊕ Lf ) → (N → B) inducing equivalence (6) is determined by the standard derivationd : B → Lf

and the mapd log : N → Lf ; both these maps implicitly use a cofibrant replacement. WhenM = N , the equivalence
(6) recovers the fact (see [Ill71, Proposition II.1.2.6.7]) that the cotangent complex of a ring map classifies derivations
in the derived category. Another illustrative case is whenP is discrete. Here we find that the spaceMapsModB

(Lf , P )
is also discrete, andπ0(MapsModB

(Lf , P )) can be described as the set of pairs(λ, d) whereλ : N → P is a monoid
map that kills the image ofM → N , andd : B → P is anA-linear derivation such thatα(n) · λ(n) = d(α(n)). Note
thatλ factors throughN → N/M → π0((N/M)grp ⊗Z B) sinceP is an abelian group, admits aB-action, and is
discrete. Hence, this description identifiesπ0(Lf ) with the sheafΩ1

f from [Kat89,§1.7] or Definition 6.3.

Remark 6.7. Let f : (M → A) → (N → B) be a map inLogAlgpre. A natural question is to ask for a conceptual
description of the cokernelQ of LfAlg

→ Lf . Using Remark 6.6, one can interpretMapsModB
(Q, P ) as the space

of (monoid) mapsλ : N → P together with nullhomotopies of the induced mapsM → P andN
∆
→ N × N

α,λ
→

B × P
act
→ P . We do not know if there is a better description.

Definition 6.8. Let f : (M → A) → (N → B) be a map inLogAlgpre, and letP• → (N → B) be the canonical
free resolution of(N → B) as an(M → A)-algebra. Thelogarithmic derived de Rham cohomology off , denoted
eitherdRf or dR(N→B)/(M→A), is the total complex associated to bicomplexΩ•

P•/(M→A). The mapsPn,Mon →

Ω•
Pn/(M→A)[1] fit together to define a mapd log : N ≃ |P•,Mon| → dRf [1] in the homotopy category ofsMon.

Elaborating on Definition 6.8, the complexdRf is naturally the simple complex associated to a simplicialA-
cochain complexn 7→ Ω•

Pn/(M→A) for n ∈ ∆opp. This definition makes it clear thatdRf is naturally anE∞-A-
algebra equipped with a decreasing and separated Hodge filtrationFil•H . Moreover, it can be computed using any
projective resolution as in the non-logarithmic case. There are also comparison mapsΩ•

Pn,Alg/A
→ Ω•

Pn/(M→A) for
eachn ∈ ∆opp which fit together to define a natural mapdRfAlg

→ dRf . Finally, we have a conjugate filtration:

Proposition 6.9. Let f : (M → A) → (N → B) be a map of prelog rings (or a map insLogAlgpre). Then there
exists a functorial increasing bounded below separated exhaustive filtrationFilconj• on dRf . This filtration can be
defined using the conjugate filtration on the bicomplexΩ•

P•/(M→A) for any projective(M → A)-algebra resolution
P• → (N → B), and is independent of the choice ofP•. In particular, there is a convergent spectral sequence, called
theconjugate spectral sequence, of the form

Ep,q
1 : Hp+q(gr

conj
p (dRf )) ⇒ Hp+q(dRf )

that is functorial inf (here we follow the homological convention thatdr is a mapEp,q
r → Ep−r,q+r−1

r ).
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Proof. This is proven like Proposition 2.3. �

Remark 6.10. Let LogAlgpre,Free(M→A)/ be the full subcategory ofLogAlgpre(M→A)/ spanned by free prelog algebras, i.e.,

prelog algebras of the formFreeSet×Set
LogAlgpre

(M→A)/

(X,Y ). ThenLogAlgpre,Free generatessLogAlgpre under homotopy-

colimits (as an∞-category). Moreover, the functor(N → B) 7→ dR(N→B)/(M→A) on sLogAlgpre(M→A)/ is the left

Kan extension of the functor(N → B) 7→ Ω•
(N→B)/(M→A) onLogAlgpre,Free(M→A)/.

The first basic result about logarithmic derived de Rham cohomology is that it agrees with the non-logarithmic
analogue for strict maps:

Proposition 6.11. Letf : (M → A) → (N → B) be a map of prelog rings. Then the natural mapdRfAlg
→ dRf is

an isomorphism whenM = N .

Proof. One can use the proof of Proposition 6.5. �

Next, we show some formal properties for tensor product behaviour:

Proposition 6.12. Let fi : (M → A) → (Ni → Bi) for i = 1, 2 be two(M → A)-algebras, and letf : (M →
A) → (N → B) ≃ (N1 → B1) ⊔h

(M→A) (N1 → B2) be their homotopy cofibre product. Then the natural map
defines an equivalence

dRf1 ⊗
L
A dRf2 ≃ dRf .

If we useg1 : (N2 → B2) → (N → B) to denote induced map, then the natural map defines an equivalence

dRf1 ⊗
L
A B2 ≃ dRg1 .

Proof. Using the fact that a cofibre product of cofibrant replacements of eachfi defines a cofibrant replacement forf ,
we reduce to the case that eachfi is free. In this case, both claims follow from computing differential forms. �

In Corollary 2.5, we saw that derived de Rham cohomology is degenerate in characteristic0. The logarithmic
theory is only slightly less degenerate: it sees the monoid,but misses the algebras completely.

Proposition 6.13. Letf : (M → A) → (N → B) be a map inLogAlgpre
Q/. Then

grconji (dRf ) ≃ ∧i(Cone(Mgrp → Ngrp)⊗Z A)[−i],

where all operations (taking exterior powers, tensor products, and group completion) are understood to be derived.

We remark that the derived group completion agrees with the naive group completion by Proposition 4.3.

Proof. Let f : (M → A) → T (X,Y ) be a free map as in Example 6.2. Then one can show that

⊕iH
i(Ω•

f )[−i] ≃ ∧iH1(Ω•
f ) ≃ ⊕i ∧

i (Z(X) ⊗Z A)[−i] ≃ ∧i((T (X,Y )Mon/M)grp ⊗Z A)[−i],

where the generators inH1(dRf ) ≃ Z(X) correspond tod log(x) ∈ Ω1
f for x ∈ X . This computation can be carried

out by reduction to the case thatX ⊔ Y is finite by passage to filtered colimits, then by reduction toA = Q and then
A = C by base change, and then by using the logarithmic Poincare lemma to reduce to the computation of the Betti
cohomology of a torus with character latticeZ(X) (up to someAn factors); we leave the details to the reader. Now in

general, for any mapf : (M → A) → (N → B), let (M → A)
a
→ P•

b
→ (N → B) be a projective resolution. Then

using the preceding calculation, we find that

grconji (dRf ) ≃ | ∧i (P grp
•,Mon/M

grp ⊗Z A)|[−i].

By Proposition 4.3, the mapP grp
•,Mon → Ngrp is an equivalence. Moreover, since(−)grp is a left Quillen functor,

Mgrp → P grp
•,Mon/M

grp is a projective resolution ofNgrp in sAbMgrp/; the claim now follows. �

Let us give an example of Proposition 6.13.
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Example 6.14. Let f : (Nk → Q[Nk]) → (1 → Q) be the map on prelog rings associated to the monoid map
Nk → 1; geometrically, this is the inclusion of(1, 1, . . . , 1) in Ak

Q with the log structure defined by the co-ordinate
hyperplanes. LetA = Q[Nk] = Γ(Ak

Q,O). Then Proposition 6.13 shows that

grconji (dRf ) ≃ ∧i
A(A

k[1])[−i] ≃ Γi
A(A

k) ≃ Symi
A(A

k).

In particular,dRf is an ordinary commutative ring with an increasing separated bounded below exhaustive filtration
whose associated graded coincides with the associated graded ofSym∗

A(A
k) for the degree filtration; I do not know

whetherdRf itself can be identified withSym∗
A(A

k).

We end this section with an example showing that log derived de Rham cohomology may change under passage to
the associated log structure in characteristic0; this pathology will not occur in characteristicp, as we will see later.

Example 6.15(Non-invariance of derived log de Rham cohomology under passing to log structure). Consider the
mapf : (0 → Q) → (0 → Q[x, x−1]) of prelogQ-algebras. Letfa : (Q∗ → Q) → (Q∗ × xZ → Q[x, x−1]) be the
associated map of log structures. Then there is a natural map

dRf → dRfa .

We will show this map is not an isomorphism. To see this, note thatdRf is strict, and hencedRf ≃ Q as explained in
Proposition 6.11. On the other hand, calculatingdRfa using the conjugate filtration gives

grconj0 (dRfa) ≃ Q and grconj1 (dRfa) ≃ cok(Q∗ → Q∗ × xZ)⊗Z Q[−1] ≃ Q[−1],

while the higher ones vanish. The mapdRf → dRfa maps the left hand side isomorphically ontogrconj0 (dRfa), and
completely missesgrconj1 (dRfa), showing thatdRf → dRfa is not an isomorphism.

7. LOGARITHMIC DERIVED DE RHAM COHOMOLOGY MODULO pn

This section is the logarithmic analog of§3, and depends on the theory developed in§4, §5, and§6. More precisely,
we will show in§7.1 that derived Cartier theory works equally well in the logarithmic context; this leads in§7.2 to a
strong connection between log derived de Rham cohomology and log crystalline cohomology. As a corollary, some of
the characteristic0 pathologies of log derived de Rham cohomology (such as Example 6.15) disappear in modulopn.

7.1. Cartier theory. The key player in (logarithmic) Cartier theory is the Frobenius twist:

Notation 7.1 (Frobenius twists). Let (M → A) ∈ LogAlgpre
Fp/

. Then we define the Frobenius mapFrob(M→A) :

(M → A) → (M → A) as the map which is multiplication byp onM , and the usual Frobenius onA. If f : (M →
A) → (N → B) is a map inLogAlgpre

Fp/
, then the Frobenius twist(N → B)(1) is defined as the homotopy pushout

of f alongFrob(M→A) : (M → A) → (M → A). There are natural mapsf (1) : (M → A) → (N → B)(1) and
Frobf : (N → B)(1) → (N → B) defined as in Notation 3.1.

The interaction between Frobenius twists on prelog rings and those on the underlying rings is quite strong:

Lemma 7.2. Let f : (M → A) → (N → B) be a map inLogAlgpre
Fp/

. Then there are base change identifications

Lf ⊗B B(1) ≃ Lf(1) andFrob∗AdRf ≃ dRf(1) . Moreover,f (1)
Alg is homotopic to(fAlg)

(1). If FrobA : A → A and

M
p
→ M are flat, then the homotopy pushoutf (1) is equivalent to the ordinary pushout. IfM = N , thenf (1) is

equivalent to the non-logarithmic pushout (equipped with the log structure defined byM ), and similarly forFrobf .

Proof. LetP• → (N → B) be a projective resoltuon of(N → B) as an(M → A)-algebra. ThenLf ≃ Ω1
P•/(M→A)

anddRf ≃ Ω•
P•/(M→A), while Lf(1) ≃ Ω1

P
(1)
• /(M→A)

anddRf(1) ≃ Ω•

P
(1)
• /(M→A)

, so the first claim follows from

the base change properties forΩ1. Next, note that by Propositions 5.3 and 5.5, the functorForgetsLogAlgpre

sMon×sAlg is both a
left and right Quillen functor. Hence,P•,Alg → B is a projective resolution ofB as anA-algebra, and similarly for

P
(1)
•,Alg → B(1), which immediately implies the second claim. For the third claim, it suffices to check that the base

change(N → B)(1) is discrete after applyingForgetsLogAlgpre

sMon×sAlg, which follows from the assumptions onM andA

becauseForgetsLogAlgpre

sMon×sAlg is left and right Quillen. The last claim can be shown as in Proposition 6.5. �

Next, in preparation for the derived version, we first recallthe logarithmic Cartier isomorphism (in the free case).
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Theorem 7.3(Classical logarithmic Cartier isomorphism). Fix setsX andY , and letT (X,Y ) = FreeSet×Set
LogAlgpre

(M→A)/

(X,Y ) =

(M ⊕N(X) → A[X ⊔ Y ]) be a free(M → A)-algebra. Then there is a natural equivalence of graded algebras

C−1 : ⊕i≥0Ω
i
f(1) [−i] ≃ ⊕i≥0H

i(Ω•
f )[−i].

Proof. The mapf : (M → A) → T (X,Y ) is a log smooth map of Cartier type, so this follows directly from Kato’s

logarithmic Cartier isomorphism [Kat89, Theorem 4.12 (1)]. We briefly sketch the argument. TheT (X,Y )(1)Alg-linear
mapC−1 : Ω1

T (X,Y )(1)/(M→A)
→ H1(Ω•

f ) is characterised by the following condition: forx ∈ X , we have

C−1(Frob∗(M→A)d log(x)) = d log(x)

while for y ∈ Y , we have
C−1(Frob∗(M→A)dy) = yp−1dy.

HereFrob(M→A) is viewed as defining (via base change) the mapT (X,Y ) → T (X,Y )(1). In particular, the logarith-
mic Cartier isomorphism is compatible with the usual one. ToconstructC−1, setS(X,Y ) := FreeSet×Set

LogAlgpre

Z/p2/

(X,Y ),

the corresponding free object overZ/p2. Thenf is obtained via base change from the mapg : (0 → Z/p2) →
S(X,Y ), and so it suffices to construct the Cartier isomorphism for the reduction modulop of g. Now we note thatg
comes equipped with a lift of Frobenius (given by·p onS(X,Y )Mon, and sending variables inX andY to theirp-th
powers inS(X,Y )Alg). The rest follows as in Theorem 3.2. �

As in the non-logarithmic case, one immediate deduces the derived version:

Proposition 7.4 (Derived logarithmic Cartier theory). Let f : (M → A) → (N → B) be a map of prelogFp-
algebras. Then the conjugate filtration ondRf isB(1)-linear, and has graded pieces computed by

Cartieri : gr
conj
i (dRf ) ≃ ∧iLf(1) [−i].

In particular, the conjugate spectral sequence takes the form

Ep,q
1 : H2p+q(∧

pLf(1)) ≃ H2p+q(Frob
∗
A ∧p Lf ) → Hp+q(dRf ).

Proof. This is proven like Proposition 3.5 using Theorem 7.3 instead of Theorem 3.2. �

We now discuss applications. First, we show that pathologies discussed in Example 6.15 cannot occur modulop:

Corollary 7.5. Let f : (M → A) → (N → B) be a map inLogAlgpre
Fp/

. Assume that bothM andN are integral.

Letfa : (Ma → A) → (Na → B) be the induced map of log structures. Then the natural map

dRf → dRfa

is an equivalence.

Proof. By [Ogu06, Proposition 1.2.2], the category of integral monoids is closed under pushouts provided one the
involved terms is a group. In particular, the log structure associated to a prelog ring with an integral monoid is also
integral. By comparing conjugate filtrations, we reduce to the analogous claim for the log cotangent complex which
follows from [Ols05, Theorem 8.16]. �

Next, we prove an analogue of Corollary 3.10.

Corollary 7.6. Letf : (M → A) → (N → B) be a map inLogAlgpre
Fp/

. Assume thatf is log smooth and of Cartier
type. Then the natural mapdRf → Ω•

f is an equivalence.

The log smoothness off implies that bothM andN admit finitely generated charts, while the Cartier type as-
sumption means thatM → N is an integral map of integral monoids (soM → N is flat by Example 4.10), and that
Frobf,Mon is an exact morphism of monoids.

Proof. By [Kat89, Corollary 4.5], the mapA → B is flat. SinceM → N is flat as well, the homotopy pushout
f (1) coincides with the usual one. Now by [Ols05, Corollary 8.29], the cotangent complexLf coincides with the one
coming from Olsson’s theory, and henceLf is discrete withπ0(Lf ) projective and naturally isomorphic to Kato’sΩ1

f .
Twisting by Frobenius, we find that the same holds forLf(1) , and hence∧pLf(1) ≃ Ωp

f(1) . The claim now follows by
comparing the conjugate filtrations on either side of the mapdRf → Ω•

f using [Kat89, Theorem 4.12 (1)] (and the
fact that(X ′′,M ′′) = (X ′,M ′) in the notation ofloc. cit. sincef is of Cartier type). �

28



We can also prove a connectivity estimate:

Corollary 7.7. Let f : (M → A) → (N → B) be a map insLogAlgpre
Z/pn/ for somen ≥ 1. Assume thatΩ1

f is
generated byr elements for somer ∈ Z≥0. ThendRf is (−r − 1)-connected.

Proof. This is proven exactly like Corollary 3.13. �

Next, we address transitivity in log derived de Rham theory.

Proposition 7.8. Let (M → A)
f
→ (N → B)

g
→ (P → C) be a composite of maps of prelogFp-algebras. Then

dRg◦f admits an increasing bounded below separated exhaustive filtration with graded pieces of the form

dRf ⊗Frob∗
AB Frob∗A

(
∧n Lg[−n]

)
,

where the second factor on the right hand side is the base change of∧nLg[−n], viewed as anB-module, along the
mapFrobA : B → Frob∗AB.

Proof. This is proven like Proposition 3.22 using Proposition 7.4 instead of Proposition 3.5. �

To move further, we need a definition:

Definition 7.9. A mapf inLogAlgpre
Fp/

is calledrelatively perfectif Frobf is an isomorphism. A mapf in LogAlgpre
Z/pn/

is calledrelatively perfect modulop if f ⊗Z Fp is relatively perfect; similarly for maps inLogAlgpre
Zp/

.

Example 7.10. Let f : (M → A) → (N → B) be a map of prelogFp-algebras. Assume thatM andN are
uniquelyp-divisible, and thatA andB are perfect. Thenf is relatively perfect. Indeed, the FrobeniusFrob(M→A) is
an isomorphism by the assumptions onM andA, so the derived pushoutf (1) coincides with the underived one, and
Frobf is natually identified withFrob(N→B); the latter is an isomorphism by the assumptionsN andB.

The basic result concerning relatively perfect maps is an analogue of Corollary 3.8.

Corollary 7.11. Let f : (M → A) → (N → B) be a relatively perfect map inLogAlgpre
Fp/

. ThenLf ≃ 0, and
dRf ≃ B.

Proof. This is proven like Corollary 3.8. �

In Question 3.9, we asked if the vanishing of the relative cotangent complex characterises relatively perfect maps
of simplicial commutative rings. In the present logarithmic context, this question has a negative answer:

Example 7.12(A non-relatively perfect mapf with Lf = 0). Let k be a field of characteristicp, and consider
f : Y := (N2 → k[x, y]) → X := (Na → k[x, y, xy−1, yx−1]) where the first prelog ring is the usual one, and the
second one is the log structure defined by the submonoid ofZ2 generated byN2 and±(1,−1) mapping to the algebra
in the obvious way; this map is the first map in the exactification of (N2 → k[N2]) → (N → k[N]) defined by the
sum mapN2 → N, and therefore is log étale in the sense of Kato. SinceY is free overk, we see thatLY/k ≃ Ω1

Y/k is a
freek[x, y]-module of rank2 with generatorsd log(x) andd log(y). Using [Ols05, Lemma 8.23], one can compute that
LX/k is also free of rank2 on generatorsd log(x) andd(xy−1) = (xy−1)

(
d log(x) + d log(y)

)
. Sincexy−1 ∈ XAlg

is a unit, one easily sees thatLX/k ⊗XAlg
YAlg → LY/k is an isomorphism. The transitivity triangle [Ols05, Theorem

8.14] then shows thatLf ≃ 0. However, the mapFrobf is not an isomorphism sinceFrobf,Alg is not so: the map
Frobf,Alg is

X
(1)
Alg := k[x

1
p , y

1
p , xy−1, yx−1] → [x

1
p , y

1
p , (xy−1)

1
p , (yx−1)

1
p ] = XAlg

ask[x
1
p , y

1
p ]-algbera map, i.e., it is a non-trivial normalisation map. Thus,f is a log étale map of prelog rings with a

vanishing cotangent complex that is not relatively perfect.

Next, we present some computations that will be useful inp-adic applications. First, we compute the log derived
de Rham cohomology of the monoid algebra of a uniquelyp-divisible monoid:

Corollary 7.13. The mapf : (0 → Z) → (Q≥0 → Z[Q≥0]) is relatively perfect modulop and

dRf ⊗Z Z/pn ≃ Z/pn[Q≥0].

Proof. The first claim implies the second by devissage and Corollary7.11, and can be proven using Example 7.10.�
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Remark 7.14. Corollary 7.13 is completely false in characteristic0: dRf ⊗Z Q is not even discrete. In fact, using
Proposition 6.13, one can show thatdRf ⊗Z Q ≃ dR(N→Q[N])/(0→Q) ≃ Q⊕Q[−1], with the non-trivial generator
in degree1 corresponding tod log(“1”) , where“1” ∈ Q≥0 is the evident element.

Next, we study the effect of “adding” a uniquelyp-divisible monoid to a prelog ring:

Corollary 7.15. The mapf : (0 → Z[Q≥0]) → (Q≥0 → Z[Q≥0]) is relatively perfect modulop, and

dRf ⊗Z Z/pn ≃ Z/pn[Q≥0].

Proof. The first claim implies the second by devissage and Corollary7.11, and can proven using Example 7.10.�

Remark 7.16. Corollary 7.13 and 7.15 admit several generalisations. Forexample, the monoidQ≥0 may be replaced
by any uniquelyp-divisible monoid, and the algebrasZ andZ[Q≥0] can be replaced by any algebras that are perfect
modulop; we leave such matters to the reader.

We end this section by recording the presence of the Gauss-Manin connection on log derived de Rham cohomology.

Proposition 7.17. Let (M → A)
f
→ (N → B)

g
→ (P → C) be a composite of maps ofZ/pn-algebras. Assume that

f is a free map. Then theB-moduledRg admits a flat connection relative tof that is functorial ing.

Proof. Let Q• → (P → C) be a free resolution ofg. ThenΩ•
Qn/(N→B) is naturally a complex ofB-modules

that admits a flat connection relative tof ; a direct way to see this is to use the isomorphism ofΩ•
Qn/(N→B) with

RΓcrys(Qn/(N → B),Ocrys) that is functorial inQn by [Kat89, Theorem 6.4]. Taking a homotopy colimit over
n ∈ ∆opp then proves the desired statement. �

7.2. Comparison with log crystalline cohomology.Our goal in this section is to prove a reasonably general com-
parison result between log derived de Rham cohomology and log crystalline cohomology in the sense of Kato [Kat89,
§5 - 6]; since the proof follows the same steps as that of Theorem 3.27, we only sketch steps. First, we construct the
comparison map in complete generality:

Proposition 7.18. Let f be a map inLogAlgpre
Z/pn/ for somen ≥ 1. Then there is a natural map of Hodge-filtered

E∞-algebras
Compf : dRf → RΓ(fcrys,Ocrys).

Proof. Let f : (M → A) → (N → B) be the map under consideration, and letP•
b•→ (N → B) be a projective

resolution insLogAlgpre(M→A)/. For eachn, the composition(M → A)
an→ Pn

bn→ (N → B) is a free mapan followed
by a mapbn that is an effective epimorphism, i.e., bothbn,Alg andbn,Mon are surjective. LetPn → D(bn) → (N →
B) be the logarithmic pd-envelope ofbn in the sense of [Kat89, Definition 5.4]; this is computed by first exactifying
bn in the sense of [Kat89, Proposition 4.10 (1)], and then taking the pd-envelope of the resulting strict map. Since the
formation of logarithmic pd-envelopes is functorial, we obtain a natural map of bicomplexes

Ω•
P•/(M→A) → Ω•

P•/(M→A) ⊗P•,Alg
D(b•)Alg (7)

Kato’s theorem [Kat89, Theorem 6.4] shows that

RΓ(fcrys,Ocrys) ≃ Ω•
an

⊗Pn,Alg
D(bn)Alg

for eachn, and so the right hand side of the map (7) is quasi-isomorphicto the constant simplicial object onRΓ(fcrys,Ocrys).
More precisely, the natural map

Ω•
a0

⊗P0,Alg
D(b0)Alg → |Ω•

P•/(M→A) ⊗P•,Alg
D(b•)Alg|

is an equivalence with both sides computing logarithmic crystalline cohomology. Totalising the map (7) then yields
the desired map

dRf := |Ω•
P•/(M→A)| → |Ω•

P•/(M→A) ⊗P•,Alg
D(b•)Alg| ≃ RΓ(fcrys,Ocrys). �

Remark 7.19. Using Remark 6.10, one can give a direct construction of the mapCompf as in Remark 3.26.

Next, we single out the class of maps we will prove the comparison theorem for:
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Definition 7.20. A mapf : (M → A) → (N → B) of prelog(0 → Z/pn)-algebras is called aG-lci map if bothA

andB areZ/pn-flat, andf can be factored as(M → A)
a
→ (P → F )

b
→ (N → B) with a an inductive limit of maps

which are log smooth and of Cartier type modulop, andb a strict effective epimorphism.

Example 7.21. Let W be the ring of Witt vectors of a perfect fieldk of characteristicp, and letOK be the ring of
integers in a finite extension ofFrac(W ), and letOK be an absolute integral closure ofOK . The primary examples of
G-lci maps we will be interested in are the modulopn reductions of: the map(0 → W ) → (OK − {0} → OK), the
map(0 → W ) → (OK − {0} → OK), and the map(OK − {0} → OK) → (N → B) obtained from an affine patch
of a semistableOK-variety.

Our main theorem here is:

Theorem 7.22. Let f : (M → A) → (N → B) be aG-lci map inLogAlgpre
Z/pn/ for somen ≥ 1. Then the map

Compf from Proposition 7.18 is an isomorphism.

Sketch of proof.Let (M → A)
a
→ (P → F )

b
→ (N → B) be a factorisation witha a log smooth map that is of

Cartier type modulop (or an inductive limit of such maps), andb a strict effective epimorphism. Then by Corollary
7.6 and devissage, the mapCompa is an isomorphism. The mapCompb is an isomorphism by Theorem 3.27 (or
simply Corollary 3.40). These two cases can be put together as in the proof of Theorem 3.27 using Corollary 7.8; we
leave the details to the reader. �

We give an example showing that the Cartier type assumption in Theorem 7.22 cannot be dropped.

Example 7.23.Letk be a field of characteristicp, and letf : Y := (N2 → k[x, y]) → X := (Na → k[x, y, xy−1, yx−1])

be the map considered in Example 7.12. SinceLf ≃ 0, the complexdRf is given by the ringX(1)
Alg using the conju-

gate filtration. The crystalline cohomologyRΓ(fcrys,O), on the other hand, is given by the ringXAlg thanks to Kato’s

theorem [Kat89, Theorem 6.4] asf is log étale. Since the mapX(1)
Alg → XAlg is not an isomorphism, we see that log

derived de Rham and log crystalline cohomologies do not necessarily agree. Note that the mapf in this example is
not an integral map, and hence not of Cartier type.

We end this section by showing that the Frobenius action on log crystalline cohomology always lifts to one log
derived de Rham cohomology.

Proposition 7.24. Let f : (0 → Z/pn) → (M → A) be a map inLogAlgpre. ThendRf has a natural Frobenius
action compatible withCompf .

Proof. This is proven just like Proposition 3.47. �

8. THE DERIVED DE RHAM COMPLEX FORp-ADIC ALGEBRAS

In this section, we recordp-adic limits of the results from§3 and§7. The basic object of interest is completed
derived de Rham cohomoogy:

Definition 8.1. Let f : A → B be a map insAlgZp/ (or in sLogAlgpre
Zp/

). Then thep-adically completed derived

de Rham cohomology off is defined asd̂Rf := R limn

(
dRf ⊗Zp Z/pn

)
, where the limit is derived. We let

d log : BMon → d̂Rf [1] denote thep-adic limit of the maps

d log : BMon → dRf ⊗Zp Z/p
n[1] ≃ dRf⊗ZpZ/pn [1]

from Definition 6.8.

We recall our standing convention thatK̂ always denotes the (derived)p-adic completion of a complexK of abelian
groups. A useful observation in working with these completions is:

Lemma 8.2. LetK be a complex of abelian groups. Then̂K ≃
̂̂
K, andK ⊗Z Z/pn ≃ K̂ ⊗Z Z/pn for all n.

Proof. It clearly suffices to show the second claim. By devissage, wemay assumen = 1. SinceFp is represented by

a perfect complex ofZp-modules, the functor−⊗Zp Fp commutes with arbitrary limits, sôK ⊗Zp Fp ≃ ̂K ⊗Zp Fp.

Hence, it suffices to show that̂L ≃ L for a complexL of Fp-vector spaces viewed as a complex of abelian groups.
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Using the compatible sequence of resolutions
(
Zp

pn

→ Zp

)
≃ Z/pn, one easily computes thatL⊗ZpZ/p

n ≃ L⊕L[1],

with the transition maps given by the identity on the first summand, and0 on the second summand. Since anNopp-
indexed limit of0 maps is0, the claim follows. �

Next, we record some basic formal properties ofp-adic derived de Rham cohomology.

Lemma 8.3. LetA→ B, A→ C, andB → D be maps insAlgZp/. Then we have:

(1) The natural mapd̂RB/A →
̂̂
dRB/A is an isomorphism.

(2) The natural maps induce isomorphisms:̂dRB/A ≃ d̂RB̂/Â ≃ d̂RB̂/A.

(3) There is a Kunneth formula: ̂dRB⊗AC/A ≃ d̂RB/A⊗̂Ad̂RC/A.

(4) There is a base change formula:̂dRB/A⊗̂AC ≃ ̂dRB⊗AC/C .

(5) If A→ B is relatively perfect modulop, thenL̂B/A ≃ 0, andd̂RD/A ≃ d̂RD/B.

All the assertions in Lemma 8.3 are easily deduced from the corresponding modulopn statement; the details are
left to the reader. We also remark that each statement in Lemma 8.3 admits a logarithmic analogue as well. The main
p-adic theorem we want is the comparison between derived de Rham theory and crystalline cohomology:

Theorem 8.4. Let f : (M → A) → (N → B) be a map of prelogZp-algebras. Assume thatA andB areZp-flat,
and thatf isG-lci modulop. Then there is a natural isomorphism

d̂Rf ≃ R lim
n

RΓcrys(f ⊗Zp Z/p
n,Ocrys).

This isomorphism is compatible with the mapsd log : N → d̂Rf [1] andd log : N → RΓcrys(f ⊗Zp Z/p
n,Ocrys)[1].

One of the advantages of derived de Rham theory over crystalline cohomology is that it automatically applies to
derived rings. In practice, this extra flexibility allows one to compute derived de Rham cohomology of some maps of
ordinaryZp-algebras without too many flatness constraints:

Proposition 8.5. LetA be aZp-flat algebra, and letB = A/(f1, . . . , fr) with (fi) a regular sequence. Then

d̂RB/A ≃ ⊗̂i

(
Â〈x〉

x−fi
→ Â〈x〉

)
.

We donotassume that the sequencef1, . . . , fr is regular modulop, so thatfi = p for somei is permissible.

Proof. We can writeB as the derived tensor product⊗iA/(fi). Each mapA → A/(fi) can be obtained via derived

base change from the mapZp[x]
x 7→0
→ Zp alongx 7→ fi. By Theorem 8.4, we know that

̂dRZp/Zp[x] ≃ Ẑp〈x〉.

The mapZp[x] → A defined byx 7→ fi admits a flat resolution
(
A[x]

x−fi
→ A[x]

)
in the category ofZp[x]-modules,

whereA[x] is viewed as aZp[x]-module viax 7→ x. Base change and Kunneth then show that

d̂RB/A ≃ ⊗̂i
̂dR(A/(fi))/A ≃ ⊗̂i

(
Â〈x〉

x−fi
→ Â〈x〉

)
,

as desired. �

As a corollary, we can relate theZp-derived de Rham cohomology of anFp-algebra to geometric invariants:

Corollary 8.6. LetA0 be anFp-algebra. IfA is ap-adically completeZp-flat algebraA lifting A0, then

̂dRA0/Zp
≃ ̂dRA/Zp

⊕ T,

whereT is the completion of a complex of torsion abelian groups. IfA0 is perfect, then ̂dRA0/Zp
≃W (A)⊕T where

W (A) is the ring of Witt vectors ofA, andT is as before.
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Proof. The second assertion follows from the first asW (A0) is Zp-flat algebra lifting liftingA0 whenA0 is perfect

(and using that ̂dRW (A0)/Zp
≃ W (A0) asZp → W (A0) is relatively perfect modulop). To see the first assertion,

note that the formulaA0 = A⊗Zp Fp (coupled with Kunneth) immediately show that

̂dRA0/Zp
≃ ̂dRA/Zp

⊗̂Zp
̂dRFp/Zp

,

so it suffices to show the assertion forA0 = Fp. Sincep ∈ Zp is a regular element, Proposition 8.5 shows that

̂dRFp/Zp
≃

(
Ẑp〈x〉

x−p
→ Ẑp〈x〉

)
.

To compute the above complex, first observe that the decompleted object can be written as
(
Zp〈x〉

x−p
→ Zp〈x〉

)
≃ Zp ⊕

(
⊕j∈Z>0 Zp/j

)

where the summandZp/j on the right is defined by the image ofγj(x− p). Completing then gives

̂dRFp/Zp
≃ Zp ⊕

(
⊕̂j∈Z>0Zp/j

)
,

as desired. �

Remark 8.7. The completed direct sum appearing at the end of the proof of Corollary 8.6 need not be torsion; for
example, the element of the direct product that ispn−1 in theZp/p

n summand for alln (and0 in the other slots) is
naturally a non-torsion element in the completed direct sum. Nevertheless, Corollary 8.6 does show that whenA0 is
perfect, the ringW (A0) may be obtained as the largest separated torsion-free quotient of ̂dRA0/Zp

.

Remark 8.8. The idea of using the Frobenius action on the cotangent complex of anFp-algebra to produce liftings
to characteristic0 is not new. It occurs in [dJ95,§1.2] and, more recently, in Scholze’s work [Sch11]. The resulting
interpretation ofW (A0) as a formal deformation ofA0 is quite useful in practice. For example, forA0 perfect, the
Teichmuller lift [·] : A0 → W (A0) arises by repeatedly applying the following simple observation toN = A0 and
M the multiplicative monoid underlying an infinitesimal thickening ofA0: if V is an abelianpn-torsion group,N is
a uniquelyp-divisible commutative monoid, andπ : M → N is a surjection of commutative monoids with kernelV ,
then there is a unique section ofπ (as the multiplication bypn map onM factors throughπ).

Warning 8.9. It is tempting to guess that the derived de Rham cohomology ofZ/pn → Fp is simplyZ/pn. However,
this is false forn ≥ 2. If it were true, then the derived de Rham cohomology ofFp → Fp ⊗Z/pn Fp =: R would
beFp by base change. NowS = SymFp

(Fp[1]) is a retract ofR (the mapR → S is a Postnikov trunctation, while
the sectionS → R is defined by choosing a generator ofπ1(R) ≃ Fp), sodRS/Fp

≃ Fp as well. However, this

is a contradiction asdRS/Fp
≃ Fp〈x〉 ⊗Fp[x] Fp (via pushout fromdRFp/Fp[x] ≃ Fp〈x〉 alongFp[x]

x 7→0
→ Fp) has

infinite dimensionalπ0 andπ1. In fact, a simplicial enhancement of Proposition 3.17 showsdRS/Fp
≃ S〈x〉.

9. PERIOD RINGS VIA DERIVED DERHAM COHOMOLOGY

In this section, we give derived de Rham interpretations forvarious period rings (with their finer structure) that
occur in thep-adic comparison theorems. We begin with notation that willbe used through the rest of this paper.

Notation 9.1. Let k be a perfect field of characteristicp with ring of Witt vectorsW . LetK0 = Frac(W ), and fix
a finite extensionK/K0 of degreee with ring of integersOK , and a uniformiserπ with minimal (Eisenstein) monic
polynomialE(x) ∈ W [x]. We fix an algebraic closureK of K, which gives us access to the absolute integral closure

OK of OK , its p-adic completion̂OK , and the Galois groupGK . For anFp-algebraR, letRperf andRperf to denote
the lim andcolim perfections ofR, respectively. We follow the convention that(R,M) refers to a prelog ring where
R is a ring,α : M → R is a prelog structure; whenM = N (resp.Q≥0) with α(1) = f (resp. withα(1) = f for an
elementf with specified rational powers), then we also write(R, f) (resp.(R, fQ≥0)). For anOK-algebraA, we let
(A, can) denote the log ring defined by the open subsetSpec(A[1/p]) ⊂ Spec(A) (unless otherwise specified).

We start by recalling a construction of Fontaine that lies atthe heart of the theory of period rings.

Construction 9.2. We defineAinf = W ((OK/p)
perf). Given a sequence{rn ∈ OK} of p-power compatible roots

(i.e.,rpn = rn−1), we use[r] ∈ Ainf to denote the Teichmuller lift of the evident elementr = limn rn of (OK/p)
perf .

By functoriality, there is aGK-action onAinf .
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Construction 9.2 interacts extremely well with de Rham theory; the highlights of this interaction are:

Proposition 9.3. With notation as above, one has:

(1) The ring(OK/p)
perf is a perfect rank1 complete valuation ring.

(2) The cotangent complex̂LAinf/W vanishes.

(3) There exists a uniqueGK-equivariant ring homomorphismθ : Ainf =W ((OK/p)
perf) → ÔK that modulop

reduces to the defining map(OK/p)
perf → OK/p ≃ ÔK/p. This mapθ is surjective and satisfiesθ([r]) = r0

for anyp-power compatible sequence{rn ∈ ÔK}.

(4) The kernelker(θ) is principal and generated by a regular element. If a compatible sequence{π
1

pn ∈ OK} of
p-power roots ofπ has been chosen, thenE([π]) is a generator forker(θ).

(5) The transitivity triangle forW → Ainf → ÔK induces an isomorphism

ψ : ker(θ)/ker(θ)2 ≃ L̂̂
OK/W

[−1] ≃ Ω̂1
OK/W

[−1].

Proof. These results (due to Fontaine) are well-known, but we sketch arguments to show that they are easy to prove.

(1) The perfectness is clear. An elementary argument [Fon94, §1.2.2] shows that there is a multiplicative bijection

of sets(OK/p)
perf ≃ limx 7→xp ÔK defined by the obvious map from the right to the left. This allows one

to define a rank1 semi-valuation on(OK/p)
perf via the valuation on the first component of the inverse limit

on the right. One checks directly that this semi-valuation has no kernel, so it defines a rank1 valuation; the
completeness is automatic as the displayed inverse limit has continuous transition maps and complete terms.

(2) This follows from the vanishing of̂LAinf/W ⊗W W/p ≃ L(OK/p)perf/(W/p) which follows from perfectness.

(3) This follows directly from the cotangent complex vanishing. Indeed, as the ringsW , Ainf , and ÔK are
all p-adically complete, the surjective mapAinf/p → OK/p admits a unique lift to a surjective mapθn :

Ainf/p
n → OK/p

n by the vanishing ofL(Ainf/pn)/(W/pn), soθ = limn θn does the job.
(4) As the source and target ofθ areW -flat andp-adically complete, it suffices to show thatker(θ) is principal

and generated by a regular element modulop. By (1), the kernel ofAinf/p = (OK/p)
perf → OK/p is the

set of elements with valuation≥ 1, which is certainly a principal non-zero ideal and can be generated by
any element of valuation exactly1. The same reasoning shows that any element ofker(θ) whose reduction
modulop has valuation1 is a generator. One hasθ(E([π])) = E(π) = 0, soE([π]) ∈ ker(θ). On the other
hand,E([π]) = [π]e mod p, which has valuatione · valp(π) = 1, so the claim follows.

(5) This follows from (2), (4), and the isomorphism̂L̂
OK/W

≃ L̂
OK/W ≃ Ω̂1

OK/W
, where the last one comes

from the ind-lci nature ofW → OK , see Proposition 9.13; an explicit formula is given in Remark 9.4. �

Remark 9.4. Continuing the discussion of Proposition 9.3, one can describe the isomorphismψ from (5) explicitly.

The transitivity triangle forW → Ainf → ÔK is an exact triangle

ker(θ)/ker(θ)2 → LAinf/W → L̂
OK/W

.

Multiplication bypn is injective on the left term (as it is a free rank1 ÔK-module), a quasi-isomorphism on the middle

term (by (2)), and surjective onπ0 of the right term (since one can extractpn-th roots inÔK). Hence, the cone of
multiplication bypn on this exact triangle gives a coboundary isomorphism.

ψn : ker(θ)/(ker(θ2), pn) ≃ L̂
OK/W

⊗Z Z/pn[−1] ≃ Ω1
OK/W

[pn],

which is simply the reduction modulopn of the mapψ from (5). Unwrapping definitions, this map is given by

f 7→ q−1(θ∗(
1

pn
(df))).

Heref ∈ ker(θ) is a lift of f ∈ ker(θ)/(ker(θ)2, pn); its derivativedf is viewed as a mapZ
f
→ ker(θ)

d
→ LAinf/W .

The map 1
pn (df) : Z → LAinf/W is the composition ofdf with the inverse ofpn : LAinf/W → LAinf/W (which is a

quasi-isomorphism by (2)). The mapθ∗ : LAinf/W → L̂
OK/W

is the usual map. Sincedf comes fromker(θ), one
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has a specified null homotopy ofpn · θ∗(
1
pn (df)), soθ∗( 1

pn (df)) can be viewed as mapZ → L̂
OK/W

⊗Z Z/pn[−1].

Finally, q−1 is the quasi-isomorphismL̂
OK/W

⊗Z Z/pn[−1] ≃ L
OK/W ⊗Z Z/pn[−1] ≃ Ω1

OK/W
[pn]. For example,

given a compatible sequence{p
1

pn ∈ OK} of p-power roots ofp, one has

ψn([p]− p) =
(
p

1
pn

)pn−1
· d(p

1
pn ) ∈ Ω1

OK/W
[pn].

Essentially the same computation also shows

ψn([ǫ]) = ǫp
n−1

n d(ǫn) = ǫ−1
n d(ǫn) =: d log(ǫn) ∈ Ω1

OK/W
[pn]

where{ǫn ∈ OK} is a compatible system ofp-power roots of1.

Remark 9.5. In the notation of Proposition 9.3, it is also true that(OK/p)
perf has an algebraically closed fraction

field; we do not prove that here as we do not need it.

Remark 9.6. Let A be an integral perfectoid̂OK-algebra in the sense of Scholze [Sch11], i.e.,A is a p-adically

complete flat̂OK-algebra such thatFrob : A/(p
1
p ) → A/p is an isomorphism (one can also replacêOK by any other

pefectoid base ring). Most of Proposition 9.3 generalises effortlessly when we replacêOK with A. In fact, the map

ÔK → A is relatively perfect modulop by definition, so the results for̂OK imply those forA by deformation theory.

In particular, there exists a unique (p-adic formal) deformationAinf(A) of A alongAinf → ÔK ; moreover,Ainf(A)
is perfect modulop (as it is relatively perfect overAinf ; in fact, one hasAinf(A) = W ((A/p)perf)), and the structure
mapθA : Ainf(A) → A has kernelker(θA) = ker(θ̂

OK

)⊗Ainf
Ainf(A).

Next, we introduce the period ringAcrys by a derived de Rham definition.

Definition 9.7. The ringAcrys of crystalline periods is defined aŝdR
OK/W .

Remark 9.8. The ringAcrys comes equipped with a Hodge filtration and a Frobenius action(by Proposition 3.47).

We show next that the preceding definition ofAcrys coincides with the classical one:

Proposition 9.9. The ringAcrys can be identified with thep-adic completion of the pd-envelopeDAinf
(ker(θ)). Under

this isomorphism, the Hodge filtration onAcrys corresponds to the filtration by divided-powers ofker(θ).

Proof. By Lemma 8.3, we haveAcrys ≃ ̂dR̂
OK/W

. Now the mapW → ÔK factors as a compositeW
a
→ Ainf

b
→ ÔK .

The mapa is relatively perfect modulop sinceW/p andAinf/p are perfect. The mapb is a quotient by the regular
element by Proposition 9.3. Hence, by Lemma 8.3 (5) and Theorem 8.4 (or simply Corollary 3.40), we have

̂dR
OK/W ≃ ̂dR̂

OK/W
≃ ̂dR̂

OK/Ainf

≃ ̂DAinf
(ker(θ)).

The assertion about the Hodge filtration is immedate. �

Remark 9.10. Continuing Remark 9.6, Proposition 9.9 generalises directly to the case wherêOK is replaced by

any integral perfectoid̂OK-algebraA, i.e.,Acrys(A) := ̂dRA/Zp
can be identified with thep-adic completion of

DAinf(A)(ker(θA)). This observation can be used to define a comparison map using[Sch11].

The ringAcrys is also natural from the point of view oflog derived de Rham cohomology. In fact, addition of the
(uniquely divisible) canonical log structure toOK does nothing at all to de Rham cohomology:

Proposition 9.11. Let(OK , can) denote the ringOK endowed with the log structureOK −{0} → OK . Then we have

L̂
OK/W ≃ ̂L(OK ,can)/W and Acrys ≃ ̂dR(OK ,can)/W .

Proof. Using the natural map, devissage, and the conjugate filtration modulop, it suffices to prove the assertion about
cotangent complexes. Also, we may pass top-adic completions of rings using Lemma 8.3. We fix once and forall a
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collection{π
a
b ∈ OK} of power-compatible positive rational powers ofπ; this choice allows us to define compatible

powers[π]
a
b ∈ Ainf for any a

b ∈ Q≥0, and hence defines a commutative diagram

W
a // Ainf

b //

c=θ

��

(Ainf , [π]
Q≥0)

d
��

ÔK
e // (ÔK , can)

,

with the square on the right being a pushout, up to passage from prelog structures to log structures. Here(ÔK , can)

denotes the prelog ringOK − {0} → ÔK . Since the mapa is relatively perfect modulop, it suffices show that
L̂c → L̂d◦b is an equivalence. By the Kunneth formula for the square, it suffices to show that̂Lb ≃ 0. This follows
from Corollary 7.15 by base change along the flat mapZ[Q≥0] → Ainf defined byt

a
b → [π]

a
b , wheret = “1” ∈ Q≥0

is the co-ordinate onZ[Q≥0]. �

Remark 9.12. The proof of Proposition 9.11 “cheated” by using thatOK − {0}
val
→ Q≥0 has a section (given by the

choice{π
a
b } of roots ofπ). A better proof would go through the following statement (which can be shown): ifA ⊂M

is an inclusion of integral commutative monoids withA a group andM/A a uniquelyp-divisible monoid, then

L(M→R)/(A→R) ≃ 0.

for any prelogFp-algebra(M → R).

Next, we want to study some finer structures on the period ringAcrys. For this, we briefly recall the structure of the
cotangent complex ofW → OK , discovered by Fontaine; our exposition follows that of Beilinson [Bei,§1.3].

Proposition 9.13(Fontaine [Fon82, Theorem 1 (ii)]). The mapW → OK has a discrete cotangent complex, i.e.,
L
OK/W ≃ Ω1

OK/W
. Moreover, the mapµp∞ → L

OK/W defined byζ 7→ d log ζ induces an exact sequence

1 →
(
a/OK)(1) →

(
K/OK

)
(1) ≃ µp∞ ⊗Zp OK

d log
→ Ω1

OK/W
→ 1, (8)

wherea ⊂ OK is the fractional ideal comprising all elements of valuation≥ − 1
p−1 (soa = OK · p−

1
p−1 ⊂ K).

All tensor products appearing below take place overZp unless otherwise specified. The following fact will be used
implicitly: if L/K is a finite extension, thenLOL/W ≃ Ω1

OL/OK
is a cyclic torsionOK-module.

Proof. The transitivity triangle shows that for any extensionK0 → L → K, the mapΩ1
OL/W ⊗OL OK → Ω1

OK/W

is injective, and the filtered colimit over these maps asL varies spans the target. SinceLOL/W ≃ Ω1
OL/W , it follows

that the same is true in the limit, proving the first assertion. For the second claim, one first observes thatker(d log) ⊂
OK ⊗ µp ⊂ OK ⊗ µp∞ as the set of allOK-submodules ofOK ⊗ µp∞ is totally ordered under inclusion (and because
d log(OK ⊗ µp) 6= 0). This gives a commutative diagram

W [µp]⊗ µp
a //

can

��

Ω1
W [µp]/W

can

��
OK ⊗ µp

b // OK ⊗W [µp] Ω
1
W [µp]/W

c

��
OK ⊗ µp

d // Ω1
OK/W

,

where the first square is a flat base change alongW [µp] → OK . Sincec is injective, it follows thatker(d) = ker(b) =

ker(a)⊗W [µp]OK . If ζ ∈ µp denotes a fixed primitivep-th root of1, thenker(a) = Ann(d log(ζ))⊗µp ⊂W [µp]⊗µp.
Now Ann(d log(ζ)) has valuation1 − 1

p−1 (by computing the derivative of1 + X + · · · + Xp−1 evaluated atζ,
for example), and this implies the claim aboutker(d log). For surjectivity ofd log, it suffices to show that for any
finite extensionL/K0, one hasΩ1

OL/W ⊂ OK · d log(µpn) ⊂ Ω1
OK/W

for some largen. If pd kills Ω1
OL/W , then
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Ω1
OL/W ⊂ Ω1

OL[µpn ]/W
generates a submodule killed bypd, for anyn. The set of all submodules ofΩ1

OL[µpn ]/W
is

totally ordered under inclusion, and it is clear thatOL[µpn ] · d log(µpn) ⊂ Ω1
OL[µpn ]/W

is a submodule not killed by

pd, for n sufficiently large: we simply needL[µpn ] to have a different (relative toK0) with valuation> d. It follows
thatΩ1

OL/W ⊂ OL[µpn ] · d log(µpn) ⊂ Ω1
OL[µpn ]/W

as desired. �

Remark 9.14. An alternative argument for the surjectivity ofd log from Proposition 9.13 runs as follows: the map
f :W [µp∞ ] → OK is relatively perfect modulop, soL̂f ≃ 0 by Lemma 8.3 (5). By the transitivity triangle, the map

f∗ : Ω1
W [µp∞ ]/W ⊗W [µp∞ ] OK → Ω1

OK/W

induces an isomorphism afterp-adic completion. Thenf∗ is also an isomorphism asp-adic completion is conservative
onp-torsionp-divisibleW -modules; surjectivity ofd log now follows from the analogous claim forW [µp∞ ].

Our next goal is to use derived de Rham formalism to constructaGK -equivariant mapZp(1) → Acrys, and show
that this coincides with a map defined by Fontaine. We first construct the map:

Construction 9.15. Thed log maps in logarithmic derived de Rham cohomology define maps

d log : µp∞ ⊂ OK
∗
→ dR(OK ,can)/W [1],

where(OK , can) denotes the prelog ring from Proposition 9.11. Takingp-adic completions gives a map

d̂ log : Zp(1)[1] → ̂dR(OK ,can)/W [1] ≃ Acrys[1].

Applyingπ1, we obtain
β := π1(d̂ log) : Zp(1) → Acrys.

This map isGK-equivariant, and has image contained inFil1H(Acrys).

The mapβ defined in Construction 9.15 coincides with maps defined by Fontaine:

Proposition 9.16. Let (ǫn) ∈ Zp(1) denote a typical element.

(1) The element[ǫ]− 1 ∈ Acrys lies inFil1H(Acrys) = ker(θ), hencelog([ǫ]) ∈ Acrys makes sense.

(2) The image of[ǫ]− 1 in gr1H(Acrys) ≃ L̂
OK/W [−1] has positive valuation.

(3) The mapβ : Zp(1) → Acrys coincides with Fontaine’s map(ǫn) 7→ log([ǫ]).

Proof sketch.We follow the notation of the proof of Proposition 9.3.

(1) This is clear becauseθ([r]) = r0 for anyp-power compatible system of elementsrn ∈ ÔK .
(2) We may assume thatǫ1 is a primitivep-th root of1, so(ǫn) ∈ Zp(1) is a generator. It suffices to check that

[ǫ] − 1 does not generate the kernel ofAinf/p → OK/p, i.e., that [ǫ]−1
[p] ∈ Ainf/p has positive valuation.

Twisting by Frobenius, it suffices to show thatvalp(ǫ1− 1) > valp(p
1
p ), but this is clear:valp(ǫ1− 1) = 1

p−1 ,

andvalp(p
1
p ) = 1

p .
(3) Letβ′ : Zp(1) → Acrys denote the map(ǫn) 7→ log([ǫ]), which makes sense by (1). It is clear that this map

is GK-equivariant, and has image contained inFil1H(Acrys). To showβ = β′, assume first that the induced
maps

gr1H(β), gr1H(β′) : Zp(1) → gr1H(Acrys) ≃ L̂
OK/W [−1]

are equal, where the last isomorphism comes from Proposition 9.9. Thenβ − β′ defines aGK-equivariant
mapZp(1) → Fil2H(Acrys). As the only such map is0 (by mapping toBdR and using Tate’s theorem [Tat67,
Theorem 3.3.2], see Remark 9.17), one seesβ = β′. It remains to show thatgr1H(β) = gr1H(β′). For this,
note that applying thep-adic completion functor to the exact sequence (8) from Proposition 9.13 gives an
exact sequence

1 → ÔK(1)
a
→ L̂

OK/W [−1] → Q→ 1

where the cokernelQ is a cyclicÔK-module killed (exactly) byp
1

p−1 . By Construction 9.15, it is immediate
that the mapgr1H(β) is given by the composite

Zp(1)
can
→ ÔK(1)

a
→ L̂

OK/W [−1].
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The mapgr1H(β′) is

Zp(1)
(ǫn) 7→[ǫ]−1

→ ker(θ)/ker(θ)2 ≃ L̂
OK/W [−1],

where the last isomorphism comes from Proposition 9.3. Showing gr1H(β) = gr1H(β′) amounts to showing

that the elements[ǫ] − 1 ∈ ker(θ)/ker(θ)2 andlimn d log(ǫn) ∈ L̂
OK/W [−1] agree under the isomorphism

ker(θ)/ker(θ)2 ≃ L̂
OK/W [−1]. This was shown in Remark 9.4, and is also stated in [Fon94,§1.5.4]. �

Remark 9.17. Proposition 9.16 used properties of the ringBdR, so we briefly recall the definition; see [Fon94] for
more. The ringB+

dR is the completion ofAinf [1/p] along the idealker(θ)[1/p]. It is a complete discrete valuation

ring with residue field̂K and an action ofGal(K/K); the ringBdR is simply the fraction field ofB+
dR. Powers of the

maximal ideal define a complete filtration ofBdR, and the graded pieces of this filtration aregrk(B+
dR) ≃ K̂(k) for any

k ∈ Z. Tate’s theorem [Tat67, Theorem 3.3.2] implies thatH0(Gal(K/K), K̂(k)) is trivial if k 6= 0, andK for k = 0.
The completeness of the filtration then implies thatH0(Gal(K/K), BdR) = K, andH0(Gal(K/K),FilkBdR) = 0

for k > 0. To relate this toAcrys, observe that the image ofker(θ) ⊂ Ainf in B+
dR lies in Fil1B+

dR, and hence has
topologically nilpotent divided powers. The defining mapAinf → B+

dR then extends to a filtered mapAcrys → B+
dR

which can be checked to be injective by checking it on graded pieces as the filtration onAcrys is separated.

Next, we discuss some extensions. Fontaine defined a certainnatural non-zero element ofH1(GK , Acrys); we
construct it as logarithmic Chern class:

Construction 9.18. Fix a uniformiserπ ∈ OK . Then thed log maps in logarithmic derived de Rham cohomology
define additive maps

stMon
π : πN ⊂ OK − {0}

d log
→ dR(OK ,can)/W [1].

Applying thep-adic completion functor, using Proposition 9.11, and passing to group completions on the source
defines an additive map

stπ : Z ≃ (πN)grp → Acrys[1],

i.e., aGK -equivariant extension ofZ byAcrys, depending on the choice ofπ. We letcl(stπ) ∈ H1(GK , Acrys) denote
the class of the corresponding extension.

To interpret the classcl(stπ) geometrically, we need an auxilliary ringROK , the so-called Faltings-Breuil ring.

Lemma 9.19. Let π ∈ OK be a fixed uniformiser with minimal (Eisenstein) polynomialE(x) ∈ W [x]. Let
(W [x], x) → (OK , can) denote the uniqueW -linear map of prelog rings defined byx 7→ π. Then

̂dR(OK ,can)/(W [x],x) ≃ ̂W [x]〈E(x)〉 =: ROK .

The Hodge filtration on the left coincides with the pd-filtration on the right.

Proof. The map(W [x], x) → (OK , can) is strict, up to passage to associated log structure, and haskernel generated
by a single regular elementE(x). Hence, the claim follows immediately from Theorem 8.4. �

The promised geometric interpretation ofstπ is:

Proposition 9.20. Let notation be as in Lemma 9.19. Then

(1) The classcl(stπ) is the obstruction to factoring the natural map ̂dR(OK ,can)/W → ̂dR(OK ,can)/W ≃ Acrys in

aGK-equivariant manner through the projection ̂dR(OK ,can)/W → ̂dR(OK ,can)/(W [x],x) ≃ ROK .

(2) This obstruction vanishes after adjoiningp-power roots ofπ, i.e., ifK∞ = ∪nK(π
1

pn ) for a chosen compat-
ible sequence ofp-power roots ofπ, thencl(stπ) maps to0 underH1(GK , Acrys) → H1(GK∞

, Acrys). In
particular, there is a canonicalGK∞

-equivariant mapROK → Acrys.

Proof. We freely use the identification between derived de Rham and crystalline cohomology (Theorem 8.4) to com-
pute derived de Rham in terms of explicit de Rham complexes.
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(1) The factorisationW → (W [x], x) → (OK , can) lets us compute ̂dR(OK ,can)/W as the complex

ROK ⊗W [x]

(
W [x]

d
→W [x] ·

dx

x

)
≃

(
ROK

d
→ ROK ·

dx

x

)
.

The mapZ ≃ (πN)grp → (OK − {0})grp
d log
→ ̂dR(OK ,can)/W [1] can then be identified as the mapZ →

̂dR(OK ,can)/W [1] determined bydxx in the complex above. On the other hand, composing this map with
̂dR(OK ,can)/W → ̂dR(OK ,can)/W ≃ Acrys definesstπ. The claim follows by chasing triangles.

(2) A choice of a compatible sequence ofp-power roots ofπ determines aGK∞
-equivariant map

c : Z[1/p] ≃
(
πN[ 1p ]

)grp

⊂ (OK − {0})grp
d log
→ dR(OK ,can)/W [1].

Restricting toZ · 1 ⊂ Z[1/p] followed byp-adic completion on the target recovers the mapstπ . However,
p-adically completingZ[1/p] produces0, so thep-adic completion ofc isGK∞

-equivariantly nullhomotopic.
It follows that the same is true forstπ, proving the claim. �

Remark 9.21. The proof of the second part of Proposition 9.20 gives an explicit identification of the classcl(stπ)
as follows. Fix a compatible sequenceκ = {π

1
pn ∈ OK} of p-power roots ofπ. Then this choiceκ determines a

nullhomotopyHκ of the mapstπ : Z → Acrys[1] by the recipe of the proof. This nullhomotopy isGK∞
-equivariant,

and its failure to beGK-equivariant is tautologically codified by the mapGK → Acrys determined by

σ 7→ Hσ(κ) −Hκ.

Unravelling definitions, this is simply the map

σ 7→ log(
σ([π])

[π]
),

which is the usual formula for Fontaine’s extension. In particular, Proposition 9.16 shows thatcl(stπ) actually comes
from the Kummer torsorκ ∈ H1(GK ,Zp(1)) (determined byκ) by pushforward alongβ : Zp(1) → Acrys.

Next, we discuss Kato’s semistable rinĝAst, and its connection with the classcl(stπ). We give a direct definition
first; a derived de Rham interpretation is given in the proof of Proposition 9.24.

Definition 9.22. Fix a uniformiserπ ∈ OK , and a sequence{π
1

pn ∈ OK} of p-power roots ofπ. The ringÂst is

defined as ̂Acrys〈X〉, the freep-adically complete pd-polynomial ring in one variableX . This ring is endowed with a
GK-action extending the one onAcrys given by

σ(X + 1) =
[π]

σ([π])
· (X + 1).

We equipÂst with the minimal pd-multiplicative Hodge filtration extending the one onAcrys and satisfyingX ∈

Fil1H(Âst). We defineφ : Âst → Âst to be the unique extension ofφ onAcrys which satisfiesφ(X + 1) = (X + 1)p.
Finally, we define a continuousAcrys-linear pd-derivationN : Âst → Âst viaN(1 +X) = 1 +X .

Remark 9.23. The construction of̂Ast given in Definition 9.22 relied not just onπ ∈ OK , but also on a choice a
compatible sequence ofp-power roots ofπ. However, one can show that the resulting ring (with its extra structure) is
independent of this last choice, up to a transitive system ofisomorphisms; see [BM02,§5]. In fact, Kato disocvered
Âst as the log crystalline cohomology of a certain map which depends only onπ; see Remark 9.25.

Proposition 9.24. The classcl(stπ) maps to0 underAcrys → Âst.

Proof. One may prove this assertion directly using Remark 9.21. However, we give a “pure thought” argument: the
ring Âst will be realised as the derived de Rham cohomology of a map, and a commutative diagram will forcecl(stπ)
to vanish when pushed tôAst. For convenience, we fix a compatible system ofall rational powers ofπ. Let

C := (Ainf [y, y
−1], [π]Q≥0 · yZ)

be the displayed prelog ring (defined using the choice of rational powers ofπ), with aGK-action defined by

σ(y) =
[π]

σ([π])
· y,
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extending the usual action onAinf . The mapy 7→ 1, coupled with the usual mapAinf → ÔK , defines a map

C → (ÔK , can)

which is essentially strict, i.e., the associated map on logrings is strict, and has kernel(E([π]), (y − 1)), which is a
regular sequence. We define

Âst

′
:= ̂dR

(
̂
OK ,can)/C

.

The compositeW → C → (ÔK , can) givesÂst

′
the structure of anAcrys-algebra. Moreover, one computes that

Âst

′
= ̂Ainf [y, y−1]〈E([π]), y − 1〉 = ̂Acrys[y, y−1]〈y − 1〉 ≃ ̂Acrys〈y − 1〉.

Hence, the associationX 7→ y− 1 identifiesÂst with Âst

′
in aGK -equivariant manner, and we use this isomorphism

without comment for the rest of the proof. The mapx 7→ [π] · y defines aGK-equivariant diagram of rings

W // (W [x], x)

��

x 7→[π]·y // C

y 7→1

��

(OK , can) // (ÔK , can).

Passing to de Rham cohomology gives us aGK-equivariant commutative diagram

dR(OK ,can)/W
//

��

dR
(
̂
OK ,can)/W

��
dR(OK ,can)/(W [x],x)

// dR
(
̂
OK ,can)/C

.

Takingp-adic completions then gives aGK -equivariant commutative diagram

̂dR(OK ,can)/W
//

��

Acrys

��

ROK
// Âst.

In other words, the natural map ̂dR(OK ,can)/W → Acrys → Âst factorsGK-equivariantly through the projection
̂dR(OK ,can)/W → ROK . The vanishing claim now follows from Proposition 9.20. �

Remark 9.25. Let (W [x], x)
a
→ C

b
→ (ÔK , can) be the factorisation appearing in the proof of Proposition 9.24. One

can check that this factorisation is anexactificationof the composite. In particular, the log crystalline cohomology
of b ◦ a and that ofb coincide, and they both recover the rinĝAst; this is Kato’s conceptual definition of̂Ast. The
argument above shows that̂dRb ≃ Âst, which gives a derived de Rham definition for̂Ast. However, unlike in the
crystalline theory, since the mapa is log étale but not of Cartier type modulop, the mapd̂Rb◦a → d̂Rb fails to be
an isomorphism (for roughly the same reason as Example 7.23). This explains why we cannot definêAst asd̂Rb◦a, a
much easier ring to contemplate than̂dRb. Note, however, that the proof given above also applies to show thatcl(stπ)

trivialises underAcrys → d̂Rb◦a. This leads to a comparison theorem over the rinĝdRb◦a, which is smaller than̂Ast.

Remark 9.26. We continue the notation of Remark 9.25. The map̂dRb◦a → Âst is simply the map ̂Compb◦a
from Proposition 7.18. In particular, the(W [x], x)-algebrasd̂Rb◦a and Âst come equipped with the Gauss-Manin

connection (the former by Proposition 7.17, and the latter by Kato’s theorem) relative toW , and the map ̂Compb◦a is
equivariant for the connection. In fact, the Gauss-Manin connection onÂst can be identified with the derivationN
introduced in Definition 9.22: the isomorphism ̂L(W [x],x)/W ≃ L̂C/W sendsd log(x) to d log([π]y) = d log([π]) +
d log(y) = d log(y) (sinced log([π]) is infinitely p-divisible and hence0 p-adically).
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10. THE SEMISTABLE COMPARISON THEOREM

Our goal now is to use the theory developed earlier in the paper to prove the Fontaine-JannsenCst conjecture
following the outline of [Bei]. Inspired by the complex analytic case, we construct in§10.1 a topology onp-adic
schemes for which derived de Rham cohomology sheafifies to0 p-adically; this can be viewed as ap-adic Poincare
lemma, and is the key conceptual theorem. The comparison mapis constructed in§10.2 using the Poincare lemma.

10.1. The site of pairs and the Poincare lemma.We preserve the notation from§9, and introduce the geometric
categories of interest.

Notation 10.1. Let VarK andVarK be the categories of reduced and separated finite type schemes over the corre-
sponding fields. These categories are viewed as sites via theh-topology, the coarsest topology finer than the Zariski
and proper topologies; see [Bei,§2].

Next, we define the categoryPK of pairs. Roughly speaking, an object of this site is a variety U ∈ VarK together
with a compactificationU relative toOK ; the compactificationU will help relate the de Rham cohomology ofU to
mixed characteristic phenomena.

Definition 10.2. The sitePK of pairs overK has as objects pairs(U,U) with U a reduced and separated finite type
K-scheme, andU a proper flat reducedOK-scheme containingU as a dense open subscheme. The morphisms are
defined in the evident way. We often write maps inPK asf : (U,U) → (V, V ) with underlying mapf : U → V .

The pair(Spec(K), Spec(OK)) is the final object ofPK . Moreover, each pair(U,U) ∈ PK defines a log scheme
(U, can) wherecan : OU ∩ O∗

U → OU is the log structure defined by the open susbetU ⊂ U . ForgettingU defines a
faithful functorPK → VarK , and theh-topology onPK is defined to be the pullback of theh-topology fromVarK
under this functor. An essential observation [Bei,§2.5] is thatPK is a particularly convenient basis forVarK :

Proposition 10.3. The functorPK → VarK is continuous and induces an equivalence of associated topoi.

Proof sketch.First, one checks directly that every mapf : U → V in VarK extends to a mapf : (U,U) → (V, V )
between suitable pairs; similarly for covers. Next, essentially by blowing up, one shows that given pairs(U,U) and
(V, V ) and a mapf : U → V , there is anh-coverπ : (U ′, U ′) → (U,U) and a mapg : (U ′, U ′) → (V, V ) of pairs
such thatπ ◦ f = g. Using the faithfulness ofPK → VarK , it follows formally thatShvh(PK) ≃ Shvh(VarK). �

From now on, we will freely identifyh-sheaves onPK with h-sheaves onVarK . In particular, to specify anh-
sheaf onVarK , it will suffice to give anh-sheaf onPK . Our ultimate goal is to relate de Rham cohomology to étale
cohomology. The following result ensures that theh-topology onPK is good enough to compute étale cohomology:

Corollary 10.4 (Deligne). LetA be a constant torsion abelian sheaf onVarK with valueA, and let(U,U) ∈ PK .
Then we have a canonical equivalence

RΓPK ((U,U), A) ≃ RΓ(Uét, A).

Proof. This follows from Proposition 10.3 and Deligne’s theorem [SGA72, Proposition 4.3.2, Expose V bis] that étale
cohomology with constant torsion coefficients can be computed in theh-topology. �

In the definition ofVarK andPK , we impose no restrictions on fields of definition of the objects. For applications,
it is convenient to work with objects are defined over a fixed base. Working with finite extensions ofK is not possible
as we cannot control the field of definition alongh-covers; instead, we define a variant of these categories over K:

Definition 10.5. The sitePK of geometric pairs has as objects pairs(V, V ) whereV is a reduced and separated finite
typeK-scheme, andV is a proper flat reducedOK-scheme containingV as a dense open subscheme. The morphisms
are defined in the evident way.

For any finite subextensionK ⊂ L ⊂ K, there is a base change functorPL → PK defined by(U,U) 7→

(U ⊗L K, (U ⊗OL OK)red). By [RG71, Theorem 3.4.6], every finite type flatOK-scheme is automatically finitely
presented, so each pair(U,U) ∈ PK comes fromPL for someL. In particular, “geometric” techniques (such as [dJ96,
§4] and [Bhae]) can be applied to such pairs by limit arguments. The logarithmic and topological remarks concerning
PK also apply toPK . In particular,(Spec(K), Spec(OK)) is the final object of this category.
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Remark 10.6. The forgetful functorPK → VarK lets us define anh-topology onPK . The analogues of Proposition
10.3 and Corollary 10.4 obtained by replacingPK (resp.VarK) with PK (resp.VarK) are also true, and proven in
exactly the same way. In fact, there is a pro-étale morphismφ : Shvh(PK) → Shvh(PK) of topoi withφ−1 being the
pullback functor introduced above.

Remark 10.7. By [dJ96, Theorem 4.5], every pair(U,U) ∈ PK admits anh-coverπ : (V, V ) → (U,U) with (V, V ) a
semistablepair, i.e.,V is regular,V −V is a simple normal crossings divisor onV , and the fibres ofV → Spec(O(V ))
are reduced. As in Proposition 10.3, this observation can beimproved to say: the collection of all such semistable
pairs forms a subcategoryPss

K ⊂ PK such thatShvh(PK) ≃ Shvh(VarK) ≃ Shvh(P
ss
K) via the evident functors

(and similarly for a variant categoryPss
K

of semistable pairs overK). Hence, at the expense of keeping track of more
conditions, we could work consistently with the more “geometric” category of semistable pairs (as opposed to arbitrary
pairs) in this paper without changing the arguments seriously.

Our main theorem is a Poincare lemma relating two natural sheaves onVarK : one computes étale cohomology,
while the other is closely related to de Rham cohomology. These sheaves are:

Construction 10.8. There are twopresheavesaccrys andacrys onPK defined by

a
c
crys(U,U) = dR(O(U),can)/W

and

acrys(U,U) = RΓ(U, dR(U,can)/W ).

The object on the right in the preceding formula is the hypercohomology in the Zariski topology ofU of displayed
complex. Both these presheaves are presheaves of cochain complexes with an algebra structure, and we view them
as living in an appropriate (symmetric monoidal) stable∞-category of presheaves. LetAc

crys andAcrys denote the
h-sheafifications ofaccrys andacrys respectively. Pullback of forms induces natural mapsa

c
crys → acrys andAc

crys →
Acrys. We denote the corresponding objects ofPK by the same notation.

The cohomology of the sheafAc
crys is essentially étale cohomology:

Proposition 10.9. Fix an object(U,U) ∈ PK . Then one has:

RΓPK
((U,U),Ac

crys ⊗Z Z/pn) ≃ RΓ(Uét,Z/p
n)⊗Z/pn Acrys/p

n.

Proof. Note first thatAc
crys is a constant sheaf onPK sinceO(U) ≃ OK

#π0(U)
for any (U,U) ∈ PK . Moreover,

Proposition 9.9 shows that

A
c
crys(∗)⊗Z Z/pn ≃ dR(OK ,can)/W ⊗Z Z/pn =: Acrys/p

n.

The claim now follows from Corollary 10.4 (and Remark 10.6). �

The Poincare lemma asserts thatAc
crys andAcrys arep-adically isomorphic. To prove this, we first prove a theorem

showing that the difference isp-adically small, at leasth-locally; this is the key geometric ingredient in this paper.

Theorem 10.10.For any pair(U,U) ∈ PK , there exists anh-coverπ : (V, V ) → (U,U) such that

(1) The induced map

τ≥1RΓ(U,OU ) → τ≥1RΓ(V ,OU )

is divisible byp as a map in the derived category.
(2) For i > 0, the induced map

RΓ(U,Ωi
(U,can)/(OK ,can)

) → RΓ(V ,Ωi
(V ,can)/(OK ,can)

)

is divisible byp as a map in the derived category.

Proof. The first claim is [Bhae, Remark 2.10], while the second claimfollows from Lemma 10.12. More precisely,
both references ensure the relevantp-divisibility at the level of cohomology groups. To obtainp-divisibility at the level
of complexes, one simply iterates the relevant construction (dim(U)− 1)-times (see [Bhac, Lemma 3.2]). �
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Remark 10.11. We do not know if the conclusion of Theorem 10.10 holds if we replace the baseOK with a higher-
dimensional ring; this seems to be an obstacle in extending the present approach to the comparison theorems to the
relative setting. The geometric question amounts to: givenan affine schemeSpec(A) and a proper mapf : X →
Spec(A), can one find proper coversπ : Y → X such that the induced mapτ≥1RΓ(X,OX) → τ≥1RΓ(Y,OY ) is
divisible byp? We can prove such divisibility forτ≥2 (and perhaps fordim(A) ≤ 2), but not generally.

The following lemma was used in the proof of Theorem 10.10.

Lemma 10.12. Let (X,X) ∈ PK . Then there exist(Y, Y ) ∈ PK and anh-coverπ : (Y, Y ) → (X,X) such
that π∗Ω1

(X,can)/(OK ,can)
→ Ω1

(Y ,can)/(OK ,can)
is divisible byp as a map. In particular,Ω1

(X,can)/(OK ,can)
→

Rπ∗Ω
1
(Y ,can)/(OK ,can)

is divisible byp as a map.

Proof. It suffices to construct a proper surjective mapπ : Y → X of schemes such that the desiredp-divisibility holds
for the pullback log structure onY . First, we claim that it suffices to solve this problem locally onX. Indeed, assume
that there exists a Zariski cover{Ui ⊂ X} and proper surjective mapsπi : Vi → Ui such thatπ∗Ω1

(Ui,can)/(OK ,can)
→

Ω1
(Vi,can)/(OK ,can)

is divisible byp; here all log structures are defined by pullback from the given log structure onX.

Then, by Nagata, we can find a single proper surjectiveπ : Y → X which factors throughπi overUi. Moreover, by
Remark 10.7, we may ensure that(Y , can) defines a semistable pair, wherecan denotes the log structure defined by
π−1(X). In particular,Ω1

(Y ,can)/(OK ,can)
isZp-flat. Now the pullback mapπ∗Ω1

(X,can)/(OK ,can)
→ Ω1

(Y ,can)/(OK ,can)

is divisible byp over eachUi, and hence globally divisible byp by flatness. Hence, we have now reduced to solving
the local problem. Again, we may assume that(X,X) is a semistable pair. Now pick an affine open cover{Ui ⊂ X}
such that eachUi is étale overSpec(OK [t1, . . . , td]/(

∏r
i=1 ti − π)) whereπ ∈ OK , and the log structure is defined

by t1, . . . , tk for r ≤ k ≤ d. In this case, extractingp-th roots of eachti can be seen to solve the problem. �

We now prove the promised Poincare lemma relatingAc
crys andAcrys.

Theorem 10.13.The mapAc
crys ⊗Z Z/pn → Acrys ⊗Z Z/pn is an equivalence of sheaves onPK for all n.

Proof. By devissage, it suffices to show the casen = 1. Thus, we must show thataccrys ⊗ Z/p → acrys ⊗ Z/p is an
isomorphism afterh-sheafification. Given a pair(U,U) ∈ PK with U normal (it suffices to restrict to such pairs since
every pair is covered by such a pair), we have

(accrys ⊗ Z/p)(U,U) = dR(OK/p,can)/k

and

(acrys ⊗ Z/p)(U,U) = RΓ(U, dR(U/p,can)/k).

By Proposition 3.22, in the stable∞-category ofpresheavesof cochain complexes onPK , the presheafacrys ⊗ Z/p
admits an increasing bounded below separated exhaustive filtration with graded piecesGi (starting ati = 0) given by

Gi(U,U) ≃ dR(OK/p,can)/k ⊗Frob∗
kOK/p Frob

∗
k

(
RΓ(U,Ωi

(U/p,can)/(OK/p,can)
)[−i]

)

Moreover, it is easily checked that the mapaccrys ⊗ Z/p → acrys ⊗ Z/p factors through the structure mapG0 →
acrys ⊗ Z/p. As sheafification commutes with colimits, it suffices to showthe following:

(1) Theh-sheafification of the mapaccrys ⊗ Z/p→ G0 is an equivalence.
(2) Theh-sheafification ofGi is 0 for i > 0.

Both claims follow thep-divisibility results of Theorem 10.10 and base change. �

Remark 10.14. The proof of Theorem 10.13 shows that one does not really needto work relative to the baseW : one
can define analogs ofAc

crys andAcrys by replacingW with any prelog ring mapping to(OK , can) without affecting
the conclusion of the theorem. In particular, usingx 7→ π, if one defines presheavesacst andast via

a
c
st(U,U) = dR(O(U),can)/(W [x],x) and ast(U,U) = RΓ(U, dR(U,can)/(W [x],x)),

then the associatedh-sheavesAc
st andAst will be isomorphic modulopn via the natural mapAc

st → Ast.
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Remark 10.15. An essential feature of most known approaches to thep-adic comparison theorems is the construction
of certain well-chosen towers of covers of mixed characteristic schemes, together with a good understanding of of
cohomology (either étale, or de Rham) as one moves in these towers. In Faltings’ method of almost étale extensions,
the key technical result is the almost purity theorem (see [Fal02, page 182, Theorem]) which controls flatness prop-
erties of the normalisation of a mixed characteristic ringR in a tower of finite étale covers ofR[1/p]; in the end, this
lets one computéetalecohomology ofR[1/p] in terms of mixed characteristic data (see [Fal02, page 242,Theorem]).
In contrast, in the approach of [Bei] as well as this paper, one constructs towers ofh-covers of mixed characteristic
schemes that makede Rhamcohomology classes highlyp-divisible (see the proof of Theorem 10.13); that such covers
suffice for applications is entirely due to Corollary 10.4. The fineness of theh-topology over the étale topology lets one
construct the required covers rather easily, while completely eschewing delicate algebraic considerations encountered,
for example, in [Fal02, page 196]; this is the main reason forthe relative simplicity of the present proof. An inter-
mediate between the two methods just described is Scholze’sapproach (unpublished): he works étale locally on the
underlying rigid analytic space, which, roughly speaking,amounts to working withh-covers of a mixed characteristic
formal model that are étale over the generic fibre (by Raynaud’s theory [Ray74]).

10.2. The semistable comparison map.Using the results of§10.1, we will construct the promised comparison map,
and show it is an isomorphism. For technical reasons pertaining to monodromy, we introduce some notation first:

Notation 10.16. We continue using Notation 9.1. In particular, we fix once andfor all a uniformiserπ ∈ OK

and, unless otherwise specified, the ringOK (and hence allOK-schemes) are viewed asW [x]-algebras viax 7→ π.

The Faltings-Breuil ringROK is defined as ̂dR(OK ,can)/(W [x],x) or, equivalently, as thep-adic completion of the
pd-envelope ofW [x] → OK (by Lemma 9.19).

We now come to the main theorem:

Theorem 10.17. Let (X,X) ∈ PK be a semistable pair withX = X [1/p] andO(X) = OK . Then there is an
Âst-linear comparison map

Compstét :
̂RΓcrys((X, can)/(W [x], x),Ocrys)⊗ROK

Âst → RΓ(XK,ét,Zp)⊗Zp Âst

that preserves filtrations,GK-actions, Frobenius actions, Chern classes of vector bundles, and monodromy operators.
Moreover,Compstét admits an inverse up toβd, whereβ ∈ Acrys is Fontaine’s element from Proposition 9.16, and
d = dim(X). In particular, Fontaine’sCst-conjecture is true.

We refer to Remark 10.7 for the definition of a semistable pair. The left hand side above is defined via

̂RΓcrys((X, can)/(W [x], x),Ocrys) := R lim
n

RΓcrys((X, can)/(W [x], x) ⊗ Z/pn,Ocrys).

This is a module overROK , and agrees with the crystalline cohomology groupsH∗(X/RV ) of [Fal02]. The groups
in [Fal99, §2] are slightly different because the ringRV there is complete for the Hodge filtration. Informally, we

may think of ̂RΓcrys((X, can)/(W [x], x),Ocrys) as the de Rham cohomology over(ROK , x) of a deformation of
(X, can) across(ROK , x) → (OK , can); as such deformations might not exist globally onX, one has to proceed
using cohomological descent. In the sequel, we will often write Comp instead ofCompstét when the meaning is clear.

Remark 10.18. The Chern classes mentioned in Theorem 10.17 live in crystalline (and étale) cohomology. In the
spirit of the present paper, a more natural operation would be to define Chern classes in derived de Rham cohomology
that lift crystalline Chern classes via the comparison mapsof propositions 3.25 and 7.18. A natural solution to this last
problem is to develop a theory of derived de Rham cohomology for algebraic stacks over some baseS, and construct
universal Chern classes inRΓ(B(GLn), dRB(GLn)/S). This can indeed be done overS = Spec(Z/pn), and will
be discussed in [Bhad]. We simply remark here that our definition proceeds by cohomological descent instead of
imitating Illusie’s definition of derived de Rham cohomology; the latter is problematic to implement for Artin stacks
as it is not clear how to define wedge powers of a complex that issupported in both positive and negative degrees.

Construction of the map.We first explain the idea informally. The sheafification adjunction gves a natural map
acrys((X,X)/W ) → Acrys((X,X) ⊗W OK). Up to completion, the right hand side is thep-adic étale cohomol-
ogy ofXK , by thep-adic Poincare lemma. The left hand side is closely related to the left hand side of the desired map
Compstét: the latter is the de Rham cohomology of(X, can) relative to(W [x], x), while the former is the de Rham
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cohomology of(X, can) overW (up to completions). Hence, adjunction almost gives a map ofthe desired form. To
move from de Rham cohomology relative toW to that relative to(W [x], x), we extend scalars tôAst.

Now for the details. First consider the map

Compn : acrys(X,X)⊗Z Z/pn → acrys((X,X)⊗OK OK)⊗Z Z/pn → RΓPK
((X,X)⊗ OK ,Acrys ⊗Z Z/pn).

The left hand side is computed as

acrys(X,X)⊗Z Z/pn = RΓ(X, dR(X,can)/W ⊗W W/pn) = RΓ((X, can)/W ⊗W W/pn,Ocrys).

while the right hand side is computed by the Poincare lemma tobe

RΓPK
((X,X)⊗OK ,Acrys⊗ZZ/p

n) ≃ RΓPK
((X,X)⊗OK ,A

c
crys⊗ZZ/p

n) ≃ RΓ(XK,ét,Z/p
n)⊗Z/pn Âcrys/p

n.

Takingp-adic limits then shows thatR limn Compn gives a map

̂RΓcrys((X, can)/W,Ocrys) → RΓ(XK,ét,Zp)⊗Zp Acrys.

This map is linear over the algebra map

̂
acrys((OK , can)/W ) → ̂

acrys((OK , can)/W ) ≃ Acrys.

Hence, linearisation gives anAcrys-linear map

̂RΓcrys((X, can)/W,Ocrys)⊗ ̂
acrys((OK ,can)/W )

Acrys → RΓ(XK,ét,Zp)⊗Zp Acrys. (9)

We base change this alongAcrys → Âst to get a map

̂RΓcrys((X, can)/W,Ocrys)⊗ ̂
acrys((OK ,can)/W )

Âst → RΓ(XK,ét,Zp)⊗Zp Âst.

Proposition 9.24 shows that the map ̂
a((OK , can)/W ) → Âst factorsGK-equivariantly through the natural map

̂
a((OK , can)/W ) → ROK . Hence, one can rewrite the preceding map as

(
̂RΓcrys((X, can)/W,Ocrys)⊗ ̂

acrys((OK ,can)/W )
ROK

)
⊗ROK

Âst → RΓ(XK,ét,Zp)⊗Zp Âst.

The parenthesized term on the left can be identified with ̂RΓcrys((X, can)/(W [x], x),Ocrys): comparison with the

crystalline theory identifies ̂RΓcrys((X, can)/W,Ocrys) with the complex
(

̂RΓcrys((X, can)/(W [x], x),Ocrys)
d
→ ̂RΓcrys((X, can)/(W [x], x),Ocrys) ·

dx

x

)
,

where the differential is defined using the Gauss-Manin connection, while the complex ̂
a((OK , can)/W ) is identified

with the complex

ROK ⊗W [x]

(
W [x]

d
→W [x] ·

dx

x

)
≃

(
ROK

d
→ ROK ·

dx

x

)
.

Thus we obtain the promised map

Compstét :
̂RΓcrys((X, can)/(W [x], x),Ocrys)⊗ROK

Âst → RΓ(XK,ét,Zp)⊗Zp Âst. �

Remark 10.19. It is clear from the construction that the only reason to basechange up tôAst fromAcrys is to ensure

that the map ̂
a((OK , can)/W ) → Âst factorsGK-equivariantly through the natural map ̂

a((OK , can)/W ) → ROK .
If we are prepared to work onlyGK∞

-invariantly (with notation as in Proposition 9.20), then this base change is
unnecessary by the same proposition, i.e., the map (9) abovecan be identified with aGK∞

-invariant comparison map

̂RΓcrys((X, can)/(W [x], x),Ocrys)⊗ROK
Acrys → RΓ(XK,ét,Zp)⊗Zp Acrys.

This is the form of the comparison map in [Fal02].
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Remark 10.20. LetX be a smoothK-variety, and fix a hypercovering(Y•, Y•) in PK resolvingXK , i.e.,(Y•, Y•) ∈
PK is a simplicial object equipped with an equivalence|Y•| ≃ XK . Applying Theorem 10.13 and following the
arguments above gives a mapacrys((Y•, Y•)/W )[1/p] → RΓ(XK,ét,Zp)⊗ Acrys[1/p]. It is tempting to identify the

left hand side withRΓdR(X/K) ⊗K K as de Rham cohomology satisfiesh-descent in characteristic0; this would
give a de Rham comparison isomorphism overAcrys[1/p]. However, this reasoning is flawed:acrys((Y•, Y•)/W )[1/p]
computesderivedde Rham cohomology in characteristic0, so it is quite degenerate (see Corollary 2.5). To recover the
de Rham comparison theoremCdR, one must work with the Hodge-completed picture so as to makethe characteristic
0 theory non-degenerate. When implemented, this strategy leads to the proof in [Bei].

Deducing consequences from[Bei]. Construction shows that the comparison map defined above is compatible with
the one defined in [Bei]: the map defined inloc. cit. uses the same sitePK , and is defined using the Hodge-completed
versions of the sheaves used above. This means that we can deduce consequences for the map defined above from
those proven in [Bei], provided we work in suitable torsion free contexts. In particular, if(Gm,Gm) denotes the usual
semistable compactification ofGm relative toOK andt is the co-ordinate onGm, then the map

Âst·
dt

t
:= ̂H1

crys((Gm,Gm)/(W [x], x),Ocrys)⊗ROK
Âst → H1

ét(Gm⊗K,Zp)⊗Âst ≃ H1
ét(Gm⊗K,Zp(1))⊗Âst(−1)

sends the generatordtt to the elementκ⊗ β; here

κ ∈ H1
ét(Gm ⊗K,Zp(1))

denotes the generator of that group determined by the compatible system of the Kummer torsors (i.e., thepn-power
map onGm), and

β ∈ Acrys(−1) ⊂ Âst(−1) ≃ Hom(Zp(1), Âst)

is Fontaine’s map(ǫ) 7→ log([ǫ]). Given this compatibility, one formally deduces many more.For example, since the
comparison map commutes with Mayer-Vietoris sequences, wededuce that the following diagram commutes:

Âst{−1}
β //

ccrys1 (O(1))

��

Âst(−1)

cét1 (O(1))

��
̂H2(P1

OK
/(W [x], x),Ocrys)⊗ROK

Âst
Comp // H2(P1

K,ét
,Zp)⊗Zp Âst.

HereÂst{−1} denotes the rinĝAst with the filtration shifted by1, and the fact used above is thatdt
t andκ correspond

to the Chern classes ofO(1) in the de Rham and the étale theories under the Mayer-Vietoris identification ofH1(Gm)
with H2(P1). Compatibility with cup-products combined with compatibility with restriction along a hyperplane
Pn−1 ⊂ Pn leads to similar diagrams as above forH∗(Pn). In particular, the comparison map commutes with Chern
classes of ample line bundles, up to the appropriate power ofβ, i.e., for a semistable pair(X,X) ∈ PK and an ample
line bundleL ∈ Pic(X), we have a commutative diagram for alld

Âst{−d}
βd

//

(ccrys1 (O(1)))d

��

Âst(−d)

(cét1 (O(1)))d

��
̂H2d((X, can)/(W [x], x),Ocrys)⊗ROK

Âst
Comp // H2d(XK,ét,Zp)⊗Zp Âst.

Since any line bundle can be written as a difference of ample line bundles on a projective scheme, we deduce the same
for arbitrary line bundles. Passing to the flag variety then proves the same statement for arbitrary vector bundles.�

Gysin compatibility.Fix proper smooth geometrically connectedK-schemesX and Y . Assume that there exist
semistable pairs(X,X) and (Y, Y ) in PK extendingX andY , and a morphismi : (Y, Y ) → (X,X) of pairs
such thatY → X is a closed immersion of codimensionc that is transverse to all the strata, i.e., étale locally onX,
we have an isomorphism(X,Y ) ≃ X∗ × (Ac, {0}) for some semistable schemeX∗ (see [Fal02, Theorem 2, page
252]). Then Poincare dulaity (see [Fal02, page 248]) gives an adjoint pushforward map

icrys∗ : ̂RΓcrys((Y , can)/(W [x], x),Ocrys){−c}[−2c] → ̂RΓ((X, can)/(W [x], x),Ocrys).
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Similarly, by [Del77, Theorem XVII.3.2.5], we also have a pushforward

iét∗ : RΓ(YK,ét,Zp)(−c)[−2c] → RΓ(XK,ét,Zp)

that is Poincare dual to the pullback. We claim that these commute withComp up to βc. This is proven via a
deformation to the normal cone argument which reduces considerations to the case whereX = P(N∨⊕OY ) for some
vector bundleN∨ onY with i being the0 section ofN∨. Instead of repeating the argument here, we simply refer to
[Ols09, Proposition 14.7]; the setup there assumes thatX andY are smooth, but this is not necessary for the proof as
long asi is transverse as above (use [Fal02, bottom of page 249] to commuteicrys∗ with transverse pullbacks). �

Verification of Chern class behaviour.For the reader’s convenience, we recall the Chern class compatibility of Compstét;
this discussion is simply a version of [Bei,§3.6] in the present context. Note that all objects involved —Gm, Gm, dt

t ,
κ, and the comparison map — are defined overW . Since the comparison maps are compatible with change of base
field, we can assume thatOK =W . We will show the desired compatibility modulopn for all n.

Fix an integern ≥ 0, and letfn : (Tn, Tn) → (Gm,Gm) be the semistable compactification of thepn-power map
onGm obtained by taking(Tn, Tn) = (Gm,Gm), with the map being thepn-th power map onGm. The mapfn is
µpn -equivariant for the standardµpn -action on the source, and so we have a pullback map

f∗
n : acrys(Gm,Gm)/pn →

(
acrys((Tn, Tn)⊗W OK)/pn

)hµpn

≃
(
acrys(Tn, Tn)/p

n ⊗W/pn Acrys/p
n
)hµpn

.

Here the right hand side is the homotopy-fixed points of theµpn(OK)-action on the displayed complex, and can be
computed via group cohomology. We will identify the image ofdt

t underf∗
n. We need some notation first. Lettn be

the co-ordinate onTn satisfyingt = tp
n

n . The formulaζ 7→ dζ
ζ will be viewed as defining a map

c : µpn(OK) → Acrys/p
n

obtained from the first Chern class mapc1 : µp∞ → Acrys[1] of Construction 9.15 by the formulac = π1(ĉ1)/p
n.

This is simply the reduction of Fontaine’s mapβ modulopn by Proposition 9.16.

Claim 10.21. The image of

dt

t
∈ π−1(acrys(Gm,Gm)/pn)

underπ−1(f
∗
n) coincides with the class defined by the1-cocycle in group cohomology ofµpn(OK) (computed using

the standard complex) determined by the mapµpn(OK)
c
→ Acrys/p

n → acrys(Tn, Tn)/p
n ⊗W/pn Acrys/p

n.

Proof sketch.The elementdtt maps to

0 = pn ·
dtn
tn

=
d(tp

n

n )

tp
n

n

∈ π−1(alog((Tn, Tn)⊗W OK)/pn),

soπ−1(f
∗
n)(

dt
t ) is the obstruction todtntn

beingµpn -invariant, but this obstruction is tautologically the map

ζ 7→
d(ζtn)

ζtn
−
dtn
tn

=
dζ

ζ
. �
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Now consider the diagram

K1 := acrys(Gm,Gm)/pn //
(
acrys((Tn, Tn)⊗W OK)/pn

)hµpn

��(
Ac

crys((Tn, Tn)⊗W OK)/pn
)hµpn

≃

c //
(
Acrys((Tn, Tn)⊗W OK)/pn

)hµpn

=: K2

K3 :=
(
RΓét(Tn ⊗K,Z/pn(1))⊗Z/pn Acrys/p

n(−1)
)hµpn

≃b

OO

RΓét(Gm ⊗W K,Z/pn(1))⊗Z/pn Acrys/p
n(−1) =: K4.

≃

a
oo

Here all maps are the natural ones, the mapa is an isomorphism by étale descent,b is an isomorphism by the compu-
tation of the cohomology of constant sheaves in theh-topology, andc is an isomorphism by the Poincare lemma.

The earlier computation shows that thedt
t ∈ π−1(K1) maps to the class inπ−1(K2) determined by the cocycle

ζ 7→ 1⊗ dζ
ζ . On the other hand, since the torsorTn → Gm is precisely the torsor determined byκmodulopn, the class

κ⊗ β ∈ π−1(K4) maps undera to the cocycle determined byid⊗ β in π−1(K3) (computed by group cohomology).
One then chases definitions to show that the image ofid⊗β underc◦b in π−1(K2) coincides with the earlier map.�

Proof of Theorem 10.17.We have already constructed the mapComp and shown that it respects pullbacks, cup prod-
ucts, Chern classes of vector bundles and Gysin maps. As the mapAc

crys/p
n → Acrys/p

n occurring in Theorem 10.13
respects Frobenius actions (with actions defined using Theorem 3.47), so doesComp.

For monodromy compatibility, consider the map

Comp′ : ̂RΓ((X, can)/(W [x], x),Ocrys) → RΓét(XK,ét,Zp)⊗Zp Âst

whoseÂst-linearisation yieldsComp. As explained in Remark 9.25, we can identify

Âst ≃ ̂RΓcrys(f,Ocrys)

wheref : (W [x]x) → (OK , can) is the map defined byf(x) = π. Thus, the(W [x], x)-modules occurring on both
sides ofComp′ acquire a connection relative toW by the Gauss-Manin connection on crystalline cohomology. We
will prove the desired monodromy compatibility ofComp by showing thatComp′ is equivariant for this connection.
Replacing Theorem 10.13 with the modified version from Remark 10.14 in the construction ofComp leads to a map

Comp′′ : ̂RΓ((X, can)/(W [x], x),Ocrys) → RΓét(XK,ét,Zp)⊗Zp d̂Rf

wheref : (W [x], x) → (OK , can) is the map defined byx 7→ π. The mapComp′ is obtained fromComp′′ by

composition withCompf : d̂Rf → ̂RΓcrys(f,Ocrys) from Remark 9.25. SinceCompf is equivariant for the natural
connection (by Remark 9.26), it suffices to show thatComp′′ is equivariant for the connection. This follows from the
connection-equivariance of the mapacst → ast from Remark 10.14, which is obvious. Hence,Comp′ (and thusComp)
are equivariant for the Gauss-Manin connection, as desired.

To see thatComp admits an inverse up toβd, note that both the source and target ofComp satisfy Poincare duality
(by [Fal02, page 248]). A formal argument (using the regularisation of the diagonal defined in [Fal02, pp 238-239],
and the Gysin and Chern class compatibility ofComp) then implies thatComp admits an inverse up toβd. �

Remark 10.22. The method employed above can be used to show a comparison result between de Rham and étale
cohomology overglobal fields, as we now sketch in case ofQ. Fix an algebraic closureQ of Q, and letZ be the
integral closure ofZ in Q. SetAddR to be the derived projective limit ofdRZ/Z ⊗Z Z/n asn varies through all

integers. Then one can show thatAddR is a filtered (ordinary) flat̂Z-algebra equipped with aGal(Q/Q)-action,
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and an endomorphismφp for each prime numberp. Moreover, the methods used above can be massaged to give the
following (loosely formulated) analog ofCst:

Theorem. LetX be a semistable proper variety overQ. Then log de Rham cohomology of a semistable model for
X is isomorphic to thêZ-étale cohomology ofX

Q
once both sides are base changed to a localisation ofAddR (while

preserving all natural structures on either side).

Essentially by Proposition 3.47, the log de Rham cohomologyof a semistable model forX carries a Frobenius
operatorφp for each primep; the analog of the monodromy operator is thêdR(Z,can)/Z-module structure. It is very
conceivable that the global theorem can deduced from thep-adic ones by an induction procedure; this question, the
preceding theorem, and related matters will be investigated elsewhere.
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Verlag, Berlin, 1974.
[Bhaa] Bhargav Bhatt. Completions and derived de rham cohomology. In preparation.
[Bhab] Bhargav Bhatt. Derived crystalline cohomology. In preparation.
[Bhac] Bhargav Bhatt. Derived splinters in positive characteristic. Available athttp://arxiv.org/abs/1109.0354 , and to appear in

Compositio.
[Bhad] Bhargav Bhatt. Flat descent for cotangent complexes. In preparation.
[Bhae] Bhargav Bhatt. p-divisibility for coherent cohomology. Available athttp://arxiv.org/abs/1204.5831 .
[Bhaf] Bhargav Bhatt. Torsion in crystalline cohomology ofsingular varieties. In preparation.
[BK86] Spencer Bloch and Kazuya Kato.p-adic étale cohomology.Inst. HautesÉtudes Sci. Publ. Math., (63):107–152, 1986.
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collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat.

[Ste76] Joseph Steenbrink. Limits of Hodge structures.Invent. Math., 31(3):229–257, 1975/76.
[Tat67] J. T. Tate.p− divisible groups.. In Proc. Conf. Local Fields (Driebergen, 1966), pages 158–183. Springer, Berlin, 1967.
[Tsu99] Takeshi Tsuji.p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case.Invent. Math., 137(2):233–411,

1999.

50


